|   | 
Details
   web
Record
Author Neilson, D.; Perali, A.; Zarenia, M.
Title Many-body electron correlations in graphene Type P1 Proceeding
Year (down) 2016 Publication (mbt18) Abbreviated Journal
Volume 702 Issue 702 Pages 012008
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract The conduction electrons in graphene promise new opportunities to access the region of strong many-body electron-electron correlations. Extremely high quality, atomically flat two-dimensional electron sheets and quasi-one-dimensional electron nanoribbons with tuneable band gaps that can be switched on by gates, should exhibit new many-body phenomena that have long been predicted for the regions of phase space where the average Coulomb repulsions between electrons dominate over their Fermi energies. In electron nanoribbons a few nanometres wide etched in monolayers of graphene, the quantum size effects and the van Hove singularities in their density of states further act to enhance electron correlations. For graphene multilayers or nanoribbons in a double unit electron-hole geometry, it is possible for the many-body electron-hole correlations to be made strong enough to stabilise high-temperature electron- hole superfluidity.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000389756000008 Publication Date 2016-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume 702 Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:140268 Serial 4455
Permanent link to this record