|   | 
Details
   web
Record
Author Mirzakhani, M.; Zarenia, M.; da Costa, D.R.; Ketabi, S.A.; Peeters, F.M.
Title Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions Type A1 Journal article
Year (down) 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 165423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the continuum model, we investigate the confined states and the corresponding wave functions of ABC-stacked trilayer graphene (TLG) quantum dots (QDs). First, a general infinite-mass boundary condition is derived and applied to calculate the electron and hole energy levels of a circular QD in both the absence and presence of a perpendicular magnetic field. Our analytical results for the energy spectra agree with those obtained by using the tight-binding model, where a TLG QD is surrounded by a staggered potential. Our findings show that (i) the energy spectrum exhibits intervalley symmetry E-K(e)(m) = -E-K'(h)(m) for the electron (e) and hole (h) states, where m is the angular momentum quantum number, (ii) the zero-energy Landau level (LL) is formed by the magnetic states with m <= 0 for both Dirac valleys, that is different from monolayer and bilayer graphene QD with infinite-mass potential in which only one of the cones contributes, and (iii) groups of three quantum Hall edge states in the tight-binding magnetic spectrum approach the zero LL, which results from the layer symmetry in TLG QDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386168000011 Publication Date 2016-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Brazilian Council for Research (CNPq), the Science without Borders program, PRONEX/FUNCAP, and CAPES foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138174 Serial 4353
Permanent link to this record