|   | 
Details
   web
Record
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D.
Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
Year (down) 2017 Publication Micron Abbreviated Journal Micron
Volume 94 Issue 94 Pages 66-73
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393247300008 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access OpenAccess
Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98
Call Number EMAT @ emat @ c:irua:139515 Serial 4341
Permanent link to this record