|   | 
Details
   web
Record
Author Schouteden, K.; Amin-Ahmadi, B.; Li, Z.; Muzychenko, D.; Schryvers, D.; Van Haesendonck, C.
Title Electronically decoupled stacking fault tetrahedra embedded in Au(111) films Type A1 Journal article
Year (down) 2016 Publication Nature communications Abbreviated Journal Nat Commun
Volume 7 Issue 7 Pages 14001
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defects, i.e., stacking fault tetrahedra (SFTs), exhibits quantized, particle-in-a-box electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390367700001 Publication Date 2016-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 7 Open Access
Notes The research in Leuven has been supported by the Research Foundation – Flanders (FWO, Belgium), and by the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. acknowledges the support from the China Scholarship Council (No. 2011624021) and from Internal Funds KU Leuven. K.S. acknowledges additional support from the FWO. The research in Moscow has been supported by grants of the Russian Foundation for Basic Research (RFBR). Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:138983 Serial 4336
Permanent link to this record