|   | 
Details
   web
Record
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M.
Title Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
Year (down) 2015 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 31 Issue 31 Pages 917-924
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000348689700005 Publication Date 2014-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457
Call Number c:irua:125292 Serial 3243
Permanent link to this record