|   | 
Details
   web
Record
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H.
Title Orientational charge density waves and the metal-insulator transition in polymerized KC60 Type A1 Journal article
Year (down) 2004 Publication AIP conference proceedings Abbreviated Journal
Volume 723 Issue Pages 339-342
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Polymerized KC60 undergoes a structural phase transition accompanied by a metal-insulator transition around 50 K. To explain the structural aspect, a mechanism involving small orientational deviations of the valence electron density on every C-60 monomer orientational charge density waves (OCDWs) – has already been proposed earlier. In the present work, we address the metal-insulator transition using the OCDW concept. We are inspired by the analogy between a polymer chain exhibiting an OCDW and a linear atomic chain undergoing a static lattice deformation doubling the unit cell: such a deformation implies a band gap at the zone boundary, yielding an insulating state (Peierls instability). Within our view, a similar mechanism occurs in polymerized KC60; the OCDW plays the role of the lattice deformation. We present tight-binding band structure calculations and conclude that the metal-insulator transition can indeed be explained using OCDWs, but that the threedimensionality of the crystal plays an unexpected key role.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94831 Serial 2513
Permanent link to this record