|   | 
Details
   web
Record
Author Sen, H.S.; Sahin, H.; Peeters, F.M.; Durgun, E.
Title Monolayers of MoS2 as an oxidation protective nanocoating material Type A1 Journal article
Year (down) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 116 Issue 8 Pages 083508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS2 monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS2 monolayer is prevented by a very high diffusion barrier indicating that MoS2 can serve as a protective layer for oxidation. The analysis is extended to WS2 and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS2 and WS2 monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000342821600017 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 52 Open Access
Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). E.D. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. H.S. is supported by an FWO Pegasus-long Marie Curie Fellowship. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:121101 Serial 2194
Permanent link to this record