|   | 
Details
   web
Record
Author Tirry, W.; Schryvers, D.
Title Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain Type A1 Journal article
Year (down) 2009 Publication Nature materials Abbreviated Journal Nat Mater
Volume 8 Issue 9 Pages 752-757
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract NiTi is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial NiTi-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrixprecipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000269215500022 Publication Date 2009-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 53 Open Access
Notes Multimat Approved Most recent IF: 39.737; 2009 IF: 29.504
Call Number UA @ lucian @ c:irua:77657 Serial 1822
Permanent link to this record