|   | 
Details
   web
Record
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 10 Pages 104524-104524,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282269600005 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85419 Serial 1337
Permanent link to this record