|   | 
Details
   web
Record
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
Year (down) 2009 Publication Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue 12 Pages 4088-4092
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000272395400023 Publication Date 2009-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 42 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:80318 Serial 1024
Permanent link to this record