toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hernandez Parrodi, J.C.; Lucas, H.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; Krook, J.; Svensson, N.; Van Passel, S. url  doi
openurl 
  Title Integration of resource recovery into current waste management through (enhanced) landfill mining Type A1 Journal article
  Year (down) 2019 Publication Detritus Abbreviated Journal  
  Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimated 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 1999/31/EC. These older landfills tend to be filled with municipal solid waste and often lack any environmental protection technology. “ Doing nothing”, state-of-theart aftercare or remediating them depends largely on technical, societal and economic conditions which vary between countries. Beside “ doing nothing' and landfill aftercare, there are different scenarios in landfill mining, from re-landfilling the waste into ”sanitary landfills" to seizing the opportunity for a combined resource-recovery and remediation strategy. This review article addresses present and future issues and potential opportunities for landfill mining as an embedded strategy in current waste management systems through a multi-disciplinary approach. In particular, three general landfill mining strategies are addressed with varying extents of resource recovery. These are discussed in relation to the main targets of landfill mining: (i) reduction of the landfill volume (technical), (ii) reduction of risks and impacts (environmental) and (iii) increase in resource recovery and overall profitability (economic). Geophysical methods could be used to determine the characteristics of the landfilled waste and subsurface structures without the need of an invasive exploration, which could greatly reduce exploration costs and time, as well as be useful to develop a procedure to either discard or select the most appropriate sites for (E)LFM. Material and energy recovery from land-filled waste can be achieved through mechanical processing coupled with thermochemical valorization technologies and residues upcycling techniques. Gasification could enable the upcycling of residues after thermal treatment into a new range of eco-friendly construction materials based on inorganic polymers and glass-ceramics. The multi-criteria assessment is directly influenced by waste- and technology related factors, which together with site-specific conditions, market and regulatory aspects, influence the environmental, economic and societal impacts of (E)LFM projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000504065300012 Publication Date 2019-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This research has been funded by the European Union ' s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721185 “NEW-MINE” (EU Training Network for Resource Recovery through Enhanced Landfill Mining; www.new-mine.eu). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165759 Serial 6219  
Permanent link to this record
 

 
Author Esguerra, J.L.; Krook, J.; Svensson, N.; Van Passel, S. url  doi
openurl 
  Title Assessing the economic potential of landfill mining : review and recommendations Type A1 Journal article
  Year (down) 2019 Publication Detritus Abbreviated Journal  
  Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract As landfill mining (LFM) gains public attention, systematic assessment of its economic potential is deemed necessary. The aim of this review is to critically analyze the usefulness and validity of previous economic assessments of LFM. Following the life cycle costing (LCC) framework, (i) the employed methods based on goal and scope, technical parameters and data inventory, and modelling choices were contrasted with respect to (ii) the synthesized main findings based on net profitability and economic performance drivers. Results showed that the selected studies (n=15) are mostly case study-specific and concluded that LFM has a weak economic potential, hinting at the importance of favorable market and regulation settings. However, several method issues are apparent as costs and revenues are accounted at different levels of aggregation, scope and scale-from process to sub-process level, from private to societal economics, and from laboratory to pilot-scale, respectively. Moreover, despite the inherent large uncertainties, more than half of the studies did not perform any uncertainty or sensitivity analyses posing validity issues. Consequently, this also limits the usefulness of results as individual case studies and as a collective, towards a generic understanding of LFM economics. Irrespective of case study-specific or generic aims, this review recommends that future assessments should be learning-oriented. That is, uncovering granular information about what builds up the net profitability of LFM, to be able to systematically determine promising paths for the development of cost-efficient projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000504065300011 Publication Date 2019-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This study has received funding from the European Training Network for Resource Recovery Through Enhanced Landfill Mining (NEW-MINE, Grant Agreement No 721185) under the European Union's EU Framework Programme for Research and Innovation Horizon 2020. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165758 Serial 6153  
Permanent link to this record
 

 
Author Einhäupl, P.; Van Acker, K.; Svensson, N.; Van Passel, S. url  doi
openurl 
  Title Developing stakeholder archetypes for enhanced landfill mining Type A1 Journal article
  Year (down) 2019 Publication Detritus Abbreviated Journal  
  Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Understanding the perspectives of different stakeholders on emerging technological concepts is an important step towards their implementation. Enhanced Landfill Mining (ELFM) is one of these emerging concepts. It aims at valorizing past waste streams to higher added values in a sustainable manner. Yet, assessment of ELFM mainly focusses on environmental and private economic issues, and societal impacts are rarely analyzed. This study uses semi-structured interviews to build understanding for different ELFM practitioners and researchers and develops five stakeholder archetypes for ELFM implementation: the Engaged Citizen, the Entrepreneur, the Technology Enthusiast, the Visionary and the Skeptic. The archetypes outline major differences in approaching ELFM implementation. The stakeholder perceptions are put into context with existing literature, and implications for ELFM implementation and future research are discussed. Results show that differences in regulatory changes and technology choices are affected by different stakeholder perspectives and more research is needed to balance inner- and inter-dimensional conflicts of ELFM's sustainability. The developed archetypes can especially be helpful when evaluating social impacts, whose perception often depends on opinion and is difficult to quantify.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000504065300010 Publication Date 2019-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185. Part of the research was presented at the 4th International Symposium on Enhanced Landfill Mining 2018 in Mechelen, Belgium. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165757 Serial 6179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: