toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.; pdf  doi
openurl 
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year (down) 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B  
  Volume 136 Issue 136 Pages 1073-1080  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000367408100131 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.887 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152  
  Call Number UA @ lucian @ c:irua:131075 Serial 4157  
Permanent link to this record
 

 
Author Jain, R.; Rather, J.A. pdf  doi
openurl 
  Title Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode Type A1 Journal article
  Year (down) 2011 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal  
  Volume 83 Issue 2 Pages 340-346  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A sensitive electroanalytical method for determination of gemifloxacin in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at multi-walled carbon nanotubes modified glassy carbon electrode in the presence of CTAB. Solubilized system of different surfactants including SDS, Tween-20 and CTAB were taken for the study of electrochemical behaviour of gemifloxacin at modified electrode. The reduction peak current increases in the presence of CTAB while other surfactants show opposite effect. The modified electrode exhibits catalytic activity, high sensitivity, stability and is applicable over wide range of concentration for the determination of gemifloxacin. The mechanism of electrochemical reduction of gemifloxacin has been proposed on the basis of CV, SWV, DPV and coulometeric techniques. The proposed squarewave voltammetric method shows linearity over the concentration range 2.4715.5 μg/mL. The achieved limits of detection (LOD) and quantification (LOQ) are 0.90 ng/mL and 3.0 ng/mL respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287268000020 Publication Date 2010-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:98687 Serial 8744  
Permanent link to this record
 

 
Author Jain, R.; Vikas; Rather, J.A. pdf  doi
openurl 
  Title Voltammetric behaviour of drotaverine hydrochloride in surfactant media and its enhancement determination in Tween-20 Type A1 Journal article
  Year (down) 2011 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal  
  Volume 82 Issue 2 Pages 333-339  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Simple, sensitive and rapid adsorptive voltammetric behaviour of drotaverine hydrochloride onto the HMDE has been explored and validated in surfactant media by using cyclic, differential pulse and square-wave voltammetry. Addition of Tween-20 to the drotaverine hydrochloride containing electrolyte enhances the reduction current signal. The voltammograms of the drug with Tween-20 in phosphate buffers of pH 2.511.0 exhibit a single well defined reduction peak which may be due to the reduction of Cdouble bond; length as m-dashC group. The cyclic voltammetric studies indicated the reduction of drotaverine hydrochloride at the electrode surface through two electron irreversible step and diffusion-controlled. The peak current showed a linear dependence with the drug concentration over the range 0.87.2 μg mL−1. The calculated LOD and LOQ are 1.8 and 6.0 ng mL−1 by SWCAdSV and 8.1 and 27.2 ng mL−1 by DPCAdSV, respectively. The procedure was applied to the assay of the drug in tablet form with mean percentage recoveries of 100.2% with SWCAdSV and 99.7% with DPCAdSV. The validity of the proposed methods was further assessed by applying a standard addition technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000285858200010 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:98686 Serial 8742  
Permanent link to this record
 

 
Author Djoković, V.; Krsmanović, R.; Božanić, D.K.; McPherson, M.; Van Tendeloo, G.; Nair, P.S.; Georges, M.K.; Radhakrishnan, T. pdf  doi
openurl 
  Title Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer Type A1 Journal article
  Year (down) 2009 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B  
  Volume 73 Issue 1 Pages 30-35  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Adsorption of sulfide ions onto a surface of starch capped silver nanoparticles upon addition of thioacetamide was investigated. UVvis absorption spectroscopy revealed that the adsorption of the sulfide ion on the surface of the silver nanoparticles induced damping as well as blue shift of the silver surface plasmon resonance band. Further increase in thioacetamide concentration led to shift of the resonance band toward higher wavelengths indicating the formation of the continuous Ag2S layer on the silver surface. Thus fabricated nanoparticles were investigated using electron microscopy techniques (TEM, HRTEM, and HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), which confirmed their coreshell structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000268657500005 Publication Date 2009-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.887 Times cited 41 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.887; 2009 IF: 2.600  
  Call Number UA @ lucian @ c:irua:77972 Serial 66  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: