toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M. url  doi
openurl 
  Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
  Year (down) 2024 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 4 Issue 2 Pages 342-353  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203306 Serial 9048  
Permanent link to this record
 

 
Author Faust, V.; Gruber, W.; Ganigue, R.; Vlaeminck, S.E.; Udert, K.M. pdf  url
doi  openurl
  Title Nitrous oxide emissions and carbon footprint of decentralized urine fertilizer production by nitrification and distillation Type A1 Journal article
  Year (down) 2022 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 2 Issue 9 Pages 1745-1755  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Combining partial nitrification, granular activated carbon (GAC) filtration, and distillation is a well-studied approach to convert urine into a fertilizer. To evaluate the environmental sustainability of a technology, the operational carbon footprint and therefore nitrous oxide (N2O) emissions should be known, but N2O emissions from urine nitrification have not been assessed yet. Therefore, N2O emissions of a decentralized urine nitrification reactor were monitored for 1 month. During nitrification, 0.4-1.2% of the total nitrogen load was emitted as N2O-N with an average N2O emission factor (EFN2O) of 0.7%. Additional N2O was produced during anoxic storage between nitrification and GAC filtration with an estimated EFN2O of 0.8%, resulting in an EFN2O of 1.5% for the treatment chain. N2O emissions during nitrification can be mitigated by 60% by avoiding low dissolved oxygen or anoxic conditions and nitrite concentrations above 5 mg-N L-1. Minimizing the hydraulic retention time between nitrification and GAC filtration can reduce N2O formation during intermediate storage by 100%. Overall, the N2O emissions accounted for 45% of the operational carbon footprint of 14 kg-CO2,equiv kg-N-1 for urine fertilizer production. Using electricity from renewable sources and applying the proposed N2O mitigation strategies could potentially lower the carbon footprint by 85%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835412700001 Publication Date 2022-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189599 Serial 7182  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: