toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R. pdf  doi
openurl 
  Title Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 21 Pages 9683-9689  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102148900001 Publication Date 2023-10-26  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201200 Serial 9052  
Permanent link to this record
 

 
Author Marazzi, E.; Ghojavand, A.; Pirard, J.; Petretto, G.; Charlier, J.-C.; Rignanese, G.-M. pdf  doi
openurl 
  Title Modeling symmetric and defect-free carbon schwarzites into various zeolite templates Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 215 Issue Pages 118385-118389  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a process has been proposed for generating negatively-curved carbon schwarzites via zeolite-templating (Braun et al., 2018). However, the proposed process leads to atomistic models which are not very symmetric and often rather defective. In the present work, an improved generation approach is developed, by imposing symmetry constraints, which systematically leads to defect-free, hence more stable, schwarzites. The stability of the newly predicted symmetric schwarzites is also compared to that of other carbon nanostructures (in particular carbon nanotubes – CNTs), which could also be accommodated within the same templates. Our results suggest that only a few of these (such as FAU, SBT and SBS) can fit schwarzites more stable than CNTs. Our predictions could help experimentalists in the crucial choice of the template for the challenging synthesis of schwarzites. Furthermore, being highly symmetric and stable phases, the models could also be synthesized by means of other experimental procedures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078649800001 Publication Date 2023-09-04  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200314 Serial 9057  
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Peremans, H. openurl 
  Title Noise-resistant correlation-based alignment of head-related transfer functions for high-fidelity spherical harmonics representation Type P3 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT)  
  Abstract It is standard practice in virtual reality applications to synthesize binaural audio based on a discrete set of directionally-dependent head-related impulse responses (HRIRs). This set of HRIRs is often time-aligned in a pre-processing step, to allow for high-fidelity interpolation between HRIRs corresponding with neighbouring directions. The fidelity of this operation depends on the similarity of neighbouring aligned HRIRs. The pairwise quality of similarity makes it a difficult criterion to optimize globally and consequently one often resorts to alignment methods based on a specific feature that can be extracted for each HRIR separately, e.g., the first-onset of the peak or the group delay. However, such proxies for similarity are very sensitive to noise and therefore require a high signal-to-noise ratio, which makes them less suitable for processing HRIRs acquired outside an anechoic room. In this paper, we advance a novel alignment method, which maximizes the similarity – defined as the correlation between the full-length HRIRs – between neighbouring aligned HRIRs for all directions at once. We show that this correlation-based alignment procedure outperforms the first-onset alignment with regards to the fidelity of the spherical harmonics representation of both the spectral and interaural time difference (ITD) information, when tested on the KEMAR HRIR and six human HRIRs. Finally, we show that the correlation-based alignment is more robust to noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199714 Serial 9062  
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D. pdf  doi
openurl 
  Title On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
  Year 2024 Publication Superconductor science and technology Abbreviated Journal  
  Volume 37 Issue 2 Pages 025010-25012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001145725500001 Publication Date 2024-01-04  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202759 Serial 9067  
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Peeters, F.M. url  doi
openurl 
  Title Optical spectrum of n-type and p-type monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 22 Pages 224301-224307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we examined the effects of proximity-induced interactions such as Rashba spin-orbit coupling and effective Zeeman fields (EZFs) on the optical spectrum of n-type and p-type monolayer (ML)-MoS2. The optical conductivity is evaluated using the standard Kubo formula under random-phase approximation by including the effective electron-electron interaction. It has been found that there exist two absorption peaks in n-type ML-MoS2 and two knife shaped absorptions in p-type ML-MoS2, which are contributed by the inter-subband spin-flip electronic transitions within conduction and valence bands at valleys K and K ' with a lifted valley degeneracy. The optical absorptions in n-type and p-type ML-MoS 2 occur in THz and infrared radiation regimes and the position, height, and shape of them can be effectively tuned by Rashba parameter, EZF parameters, and carrier density. The interesting theoretical predictions in this study would be helpful for the experimental observation of the optical absorption in infrared to THz bandwidths contributed by inter-subband spin-flip electronic transitions in a lifted valley degeneracy monolayer transition metal dichalcogenides system. The obtained results indicate that ML-MoS2 with the platform of proximity interactions make it a promising infrared and THz material for optics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001135684400003 Publication Date 2023-12-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202777 Serial 9069  
Permanent link to this record
 

 
Author Li, H.; Pandey, T.; Jiang, Y.; Gu, X.; Lindsay, L.; Koh, Y.K. pdf  doi
openurl 
  Title Origins of heat transport anisotropy in MoTe₂ and other bulk van der Waals materials Type A1 Journal article
  Year 2023 Publication Materials Today Physics Abbreviated Journal  
  Volume 37 Issue Pages 101196-101198  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Knowledge of how heat flows anisotropically in van der Waals (vdW) materials is crucial for thermal management of emerging 2D materials devices and design of novel anisotropic thermoelectric materials. Despite the importance, anisotropic heat transport in vdW materials is yet to be systematically studied and is often presumably attributed to anisotropic speeds of sound in vdW materials due to soft interlayer bonding relative to covalent in-plane networks of atoms. In this work, we investigate the origins of the anisotropic heat transport in vdW materials, through time-domain thermoreflectance (TDTR) measurements and first-principles calculations of anisotropic thermal conductivity of three different phases of MoTe2. MoTe2 is ideal for the study due to its weak anisotropy in the speeds of sound. We find that even when the speeds of sound are roughly isotropic, the measured thermal conductivity of MoTe2 along the c-axis is 5-8 times lower than that along the in-plane axes. We derive meaningful characteristic heat capacity, phonon group velocity, and relaxation times from our first principles calculations for selected vdW materials (MoTe2, BP, h-BN, and MoS2), to assess the contributions of these factors to the anisotropic heat transport. Interestingly, we find that the main contributor to the heat transport anisotropy in vdW materials is anisotropy in heat capacity of the dominant heat-carrying phonon modes in different directions, which originates from anisotropic optical phonon dispersion and disparity in the frequency of heat-carrying phonons in different directions. The discrepancy in frequency of the heat-carrying phonons also leads to similar to 2 times larger average relaxation times in the cross-plane direction, and partially explains the apparent dependence of the anisotropic heat transport on the anisotropic speeds of sound. This work provides insight into understanding of the anisotropic heat transport in vdW materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001093005700001 Publication Date 2023-08-09  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201295 Serial 9070  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R. url  doi
openurl 
  Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal  
  Volume 620 Issue 7975 Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001153630400007 Publication Date 2023-08-23  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203827 Serial 9078  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
  Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal  
  Volume Issue Pages 45-48  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117703800012 Publication Date 2023-11-20  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202839 Serial 9079  
Permanent link to this record
 

 
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Jorissen, B.; Fernandes, L. openurl 
  Title Simple systems, complicated physics : an interview with Nir Navon Type Editorial
  Year 2023 Publication Belgian journal of physics Abbreviated Journal  
  Volume 1 Issue 6 Pages 4-5  
  Keywords Editorial; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract The EPS Antwerp Young Minds (AYM) invited Prof. Nir Navon (Yale University) to hold a colloquium for the physics department. For an audience of students and researchers, Prof. Navon presented recent advances in ultracold quantum matter and research from his own lab. His experimental work paves the way to make toy models used by theorists a reality. We sat down afterwards to discuss ultracold physics, box traps and setting up a lab from scratch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202673 Serial 9090  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  doi
openurl 
  Title Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks Type A1 Journal article
  Year 2023 Publication Journal of magnetism and magnetic materials Abbreviated Journal  
  Volume 587 Issue Pages 171280-171289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic magnetic simulations we investigate the soliton motion along a pinned skyrmion chain containing an interstitial skyrmion. We find that the soliton can exhibit stable motion along the chain without a skyrmion Hall effect for an extended range of drives. Under a constant drive the solitons have a constant velocity. We also measure the skyrmion velocity-current curves and identify the signatures of different phases including a pinned phase, stable soliton motion, and quasi-free motion at higher drives where all of the skyrmions depin from the pinning centers and move along the rigid wall. In the quasi-free motion regime, the velocity is oscillatory due to the motion of the skyrmions over the pinning sites. For increasing pinning strength, the onset of soliton motion shifts to higher values of current density. We also find that for stronger pinning, the characteristic velocity-current shape is affected by the annihilation of single or multiple skyrmions in the drive interval over which the soliton motion occurs. Our results indicate that stable skyrmion soliton motion is possible and that the solitons could be used as information carriers instead of the skyrmions themselves for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001086712600001 Publication Date 2023-09-21  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201139 Serial 9095  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200300 Serial 9099  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202811 Serial 9101  
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
  Year 2023 Publication Diamond and related materials Abbreviated Journal  
  Volume 139 Issue Pages 110266-110268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-02  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200920 Serial 9103  
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C. pdf  url
doi  openurl
  Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 133 Issue 15 Pages 150902-150937  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079329000001 Publication Date 2023-04-27  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200351 Serial 9105  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 9 Pages 092801  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342568000020 Publication Date 2014-08-28  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:119950 Serial 82  
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
  Year 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 51 Issue 8 Pages 082903,1-082903,29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000281905000026 Publication Date 2010-08-23  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291  
  Call Number UA @ lucian @ c:irua:84880 Serial 106  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M. doi  openurl
  Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 547-548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800258 Publication Date 2010-01-15  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84893 Serial 217  
Permanent link to this record
 

 
Author Maistrenko, Y.L.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V.L. doi  openurl
  Title Cascades of multiheaded chimera states for coupled phase oscillators Type A1 Journal article
  Year 2014 Publication International journal of bifurcation and chaos in applied sciences and engineering Abbreviated Journal Int J Bifurcat Chaos  
  Volume 24 Issue 8 Pages 1440014  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an “eight-like” limit cycle resulting eventually in a chimera state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000341494900015 Publication Date 2014-08-29  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-1274;1793-6551; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.329 Times cited Open Access  
  Notes Approved Most recent IF: 1.329; 2014 IF: 1.078  
  Call Number UA @ lucian @ c:irua:119303 Serial 285  
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V. pdf  openurl
  Title Classical atomic bilayers Type H1 Book chapter
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 523-527  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Plenum Press Place of Publication New York Editor  
  Language Wos 000083193600095 Publication Date 0000-00-00  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:24177 Serial 363  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
  Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B  
  Volume 46 Issue Pages 4667-4680  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JK72500032 Publication Date 2002-07-27  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 148 Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:2998 Serial 890  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Elusive s-f intrasite interactions and double exchange in solids: ferromagnetic versus nonmagnetic ground state Type A1 Journal article
  Year 2009 Publication Journal of experimental and theoretical physics Abbreviated Journal J Exp Theor Phys+  
  Volume 109 Issue 2 Pages 286-292  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion, which results in the electronic term structure of atoms and is responsible for Hunds rules. By expanding the Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present in solids as a correlation effect, which means that the interaction requires a multideterminant version of the Hartree-Fock method. Of particular interest is the case where this interaction couples states of localized ( f) and delocalized ( s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider a simple model in the framework of an effective limited configuration interaction method with one localized f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic state. The model is relevant for solids with localized and itinerant electron states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000270506500014 Publication Date 2009-09-18  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7761;1090-6509; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.196 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.196; 2009 IF: 0.871  
  Call Number UA @ lucian @ c:irua:79163 Serial 1027  
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue 4 Pages 7319  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000346272900001 Publication Date 2014-12-08  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 38 Open Access  
  Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:122743 Serial 1062  
Permanent link to this record
 

 
Author Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M. pdf  doi
openurl 
  Title Graphane Type A1 Journal article
  Year 2015 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci  
  Volume 5 Issue 5 Pages 255-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomically thin crystals have recently been the focus of attention, in particular, after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class, the chemically derived graphenes have attracted tremendous interest. It was shown that, although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane' (CH), fluorographene (CF), and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview surveys structural, electronic, magnetic, vibrational, and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well. WIREs Comput Mol Sci 2015, 5:255-272. doi: 10.1002/wcms.1216 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352862700001 Publication Date 2015-03-12  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-0876; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 14.016 Times cited 54 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. H. Sahin is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 14.016; 2015 IF: 11.885  
  Call Number c:irua:125996 Serial 1366  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene: a perfect nanoballoon Type A1 Journal article
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 93 Issue 19 Pages 193107,1-193107,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000260944100090 Publication Date 2008-11-12  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 295 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved Most recent IF: 3.411; 2008 IF: 3.726  
  Call Number UA @ lucian @ c:irua:73196 Serial 1368  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: