toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year (down) 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year (down) 2023 Publication Drug resistance updates Abbreviated Journal  
  Volume 67 Issue Pages 100914  
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925156500001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 24.3 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906  
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240  
Permanent link to this record
 

 
Author De Backer, J. url  openurl
  Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
  Year (down) 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 232 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:193568 Serial 7277  
Permanent link to this record
 

 
Author De Backer, J.; Maric, D.; Zuhra, K.; Bogaerts, A.; Szabo, C.; Vanden Berghe, W.; Hoogewijs, D. url  doi
openurl 
  Title Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response Type A1 Journal article
  Year (down) 2022 Publication Antioxidants Abbreviated Journal Antioxidants  
  Volume 11 Issue 8 Pages 1548  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000846411000001 Publication Date 2022-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7  
  Call Number PLASMANT @ plasmant @c:irua:190686 Serial 7102  
Permanent link to this record
 

 
Author Lin, A.; De Backer, J.; Quatannens, D.; Cuypers, B.; Verswyvel, H.; De La Hoz, E.C.; Ribbens, B.; Siozopoulou, V.; Van Audenaerde, J.; Marcq, E.; Lardon, F.; Laukens, K.; Vanlanduit, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title The effect of local non‐thermal plasma therapy on the<scp>cancer‐immunity</scp>cycle in a melanoma mouse model Type University Hospital Antwerp
  Year (down) 2022 Publication Bioengineering & Translational Medicine Abbreviated Journal Bioengineering & Transla Med  
  Volume Issue Pages  
  Keywords University Hospital Antwerp; A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784103500001 Publication Date 2022-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-6761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Vlaamse regering, 1S67621N 1S76421N G044420N 12S9221N 12S9218N ; The authors would like to thank and acknowledge Christophe Hermans, Ho Wa Lau, and Hilde Lambrechts for their help with sectioning and preparing the IHC slides. The authors would also like to thank Dani Banner for designing the ergonomic NTP applicator handle and Hasan Baysal for 3D printing the pieces used in this experiment. We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Some of the resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) The data that support the findings of this study are available from the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9218N (Abraham Lin), 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaert, and Steve Vanlanduit), 1S76421N (Delphine Quatannens), and 1S67621N (Hanne Verswyvel). Figure 7 was created with BioRender.com. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:187909 Serial 7056  
Permanent link to this record
 

 
Author De Backer, J.; Lin, A.; Berghe, W.V.; Bogaerts, A.; Hoogewijs, D. url  doi
openurl 
  Title Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response Type A1 Journal article
  Year (down) 2022 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 55 Issue Pages 102399  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in me­lanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intra­ molecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2–related factor 2 (NRF2). The knock­ down and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto unde­ scribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of in­ terest either as a biomarker or as a candidate for future targeted therapies in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000844595100002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221 N (Abraham Lin) and G044420 N (Abraham Lin and Annemie Bogaerts). Joey De Backer acknowledges a visiting fellowship from the University of Fribourg. David Hoogewijs acknowledges support by the Swiss National Science Foundation (grants 31003A173000 and 310030207460). Approved Most recent IF: 11.4  
  Call Number PLASMANT @ plasmant @c:irua:190635 Serial 7101  
Permanent link to this record
 

 
Author Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
  Year (down) 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 182 Issue Pages 1724-1736  
  Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675794700005 Publication Date 2021-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.671 Times cited Open Access OpenAccess  
  Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792  
Permanent link to this record
 

 
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year (down) 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 3 Pages 579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614960600001 Publication Date 2021-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709  
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year (down) 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemière, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Non‐Thermal Plasma as a Unique Delivery System of Short‐Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells Type A1 Journal article
  Year (down) 2019 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume 6 Issue 6 Pages 1802062  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462613100001 Publication Date 2019-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.034 Times cited 39 Open Access OpenAccess  
  Notes This study was funded in part by the Flanders Research Foundation (grant no. 12S9218N) and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (LTPAM) grant no. 743151). The microsecond-pulsed power supply was purchased following discussions with the C. & J. Nyheim Plasma Institute at Drexel University. The authors would like to thank Dr. Erik Fransen for his expertise and guidance with the statistical models and analysis used here. The authors would also like to thank Dr. Sander Bekeschus of the Leibniz Institute for Plasma Science and Technology for the discussions at conferences and workshops. A.L. contributed to the design and carrying out of all experiments. A.L. also wrote the manuscript. Y.G. contributed to the design and carrying out of experiments involving chemical measurements. Y.G. also contributed to writing the chemical portions of the manuscript. J.D.B. contributed to the design and carrying out of in vivo experiments. J.D.B. also contributed to writing the portions of the manuscript involving animal experiments and care. J.V.L. contributed to the optimization of the calreticulin protocol used in the experiments. W.V.B. contributed to optimization of colorimetric assays used in the experiments. F.L. contributed to mass spectrometry measurements. P.C., S.D., E.S., and A.B. provided workspace, equipment, and valuable discussions for the project. All authors participated in the review of the manuscript.; Flanders Research Foundation, 12S9218N ; European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Approved Most recent IF: 9.034  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156548 Serial 5165  
Permanent link to this record
 

 
Author De Backer, J.; Razzokov, J.; Hammerschmid, D.; Mensch, C.; Hafideddine, Z.; Kumar, N.; van Raemdonck, G.; Yusupov, M.; Van Doorslaer, S.; Johannessen, C.; Sobott, F.; Bogaerts, A.; Dewilde, S. pdf  url
doi  openurl
  Title The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor Type A1 Journal article
  Year (down) 2018 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 19 Issue Pages 1-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Molecular Spectroscopy (MolSpec)  
  Abstract Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449722100002 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes M.Y. and N.K. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grant nos. 1200216N and 12J5617N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI). C.M acknowledges the financial support provided by the Flemish Community and the University of Antwerp (BOF-NOI) for the pre-doctoral scholarship is under grant number/project ID: 28465. S.V.D., S. D. and Z.H. acknowledge the FWO (Grant G.0687.13) and the GOA-BOF UA 2013–2016 (project-ID 28312) for funding. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:152818 Serial 5006  
Permanent link to this record
 

 
Author Vermeylen, S.; De Waele, J.; Vanuytsel, S.; De Backer, J.; Van der Paal, J.; Ramakers, M.; Leyssens, K.; Marcq, E.; Van Audenaerde, J.; L. J. Smits, E.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells Type A1 Journal article
  Year (down) 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 13 Issue 13 Pages 1195-1205  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, two types of melanoma and glioblastoma cancer cell lines are treated with cold atmospheric plasma to assess the effect of several parameters on the cell viability. The cell viability decreases with treatment duration and time until analysis in all cell lines with varying sensitivity. The majority of dead cells stains both AnnexinV (AnnV) and propidium iodide, indicating that the plasma-treated non-viable cells are mostly late apoptotic or necrotic. Genetic mutations might be involved in the response to plasma. Comparing the effects of two gas mixtures, as well as indirect plasma-activated medium versus direct treatment, gives different results per cell line. In conclusion, this study confirms the potential of plasma for cancer therapy and emphasizes the influence of experimental parameters on therapeutic outcome.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393131600007 Publication Date 2016-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 26 Open Access  
  Notes The authors acknowledge the University of Antwerp for providing research funds. The authors are very grateful to V. Schulz-von der Gathen and J. Benedikt (Bochum University) for providing the COST RF plasma jet. The authors would also like to thank Eva Santermans (University of Hasselt) for statistical advice. J. De Waele, J. Van Audenaerde and J. Van der Paal are research fellows of the Research Foundation Flanders (fellowship numbers: 1121016N, 1S32316N and 11U5416N), E. Marcq of Flanders Innovation & Entrepreneurship (fellowship number: 141433). Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:138722 Serial 4328  
Permanent link to this record
 

 
Author de Backer, W.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Hufkens, A.; Parizel, P.M.; Bedert, L.; de Backer, J. pdf  doi
openurl 
  Title The effect of roflumilast in addition to LABA/LAMA/ICS treatment in COPD patients Type L1 Letter to the editor
  Year (down) 2014 Publication European Respiratory Journal Abbreviated Journal Eur Respir J  
  Volume 44 Issue 2 Pages 527-529  
  Keywords L1 Letter to the editor; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000340017300029 Publication Date 2014-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.569 Times cited 26 Open Access  
  Notes ; ; Approved Most recent IF: 10.569; 2014 IF: 7.636  
  Call Number UA @ lucian @ c:irua:117335 Serial 832  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Verhulst, S.L.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Verdonck, P.R.; van Doorn, J.W.D.; Nadjmi, N.; de Backer, W.A. doi  openurl
  Title Change in upper airway geometry between upright and supine position during tidal nasal breathing Type A1 Journal article
  Year (down) 2014 Publication Journal Of Aerosol Medicine And Pulmonary Drug Delivery Abbreviated Journal J Aerosol Med Pulm D  
  Volume 27 Issue 1 Pages 51-57  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000331144500007 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-2711;1941-2703; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.528 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 2.528; 2014 IF: 2.798  
  Call Number UA @ lucian @ c:irua:115759 Serial 308  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A. pdf  doi
openurl 
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year (down) 2013 Publication Respiratory care Abbreviated Journal Resp Care  
  Volume Issue Pages 1-20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Dallas, Tex. Editor  
  Language Wos 000349200100024 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.733 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 1.733; 2013 IF: 1.840  
  Call Number UA @ lucian @ c:irua:112982 Serial 1303  
Permanent link to this record
 

 
Author de Backer, J.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Parizel, P.M.; de Backer, W. url  doi
openurl 
  Title Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients Type A1 Journal article
  Year (down) 2013 Publication International Journal Of Chronic Obstructive Pulmonary Disease Abbreviated Journal Int J Chronic Obstr  
  Volume 8 Issue Pages 569-579  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Previous studies have demonstrated the potential beneficial effect of N-acetylcysteine (NAC) in chronic obstructive pulmonary disease (COPD). However, the required dose and responder phenotype remain unclear. The current study investigated the effect of high-dose NAC on airway geometry, inflammation, and oxidative stress in COPD patients. Novel functional respiratory imaging methods combining multislice computed tomography images and computer-based flow simulations were used with high sensitivity for detecting changes induced by the therapy. Methods: Twelve patients with Global Initiative for Chronic Obstructive Lung Disease stage II COPD were randomized to receive NAC 1800 mg or placebo daily for 3 months and were then crossed over to the alternative treatment for a further 3 months. Results: Significant correlations were found between image-based resistance values and glutathione levels after treatment with NAC (P = 0.011) and glutathione peroxidase at baseline (P = 0.036). Image-based resistance values appeared to be a good predictor for glutathione peroxidase levels after NAC (P = 0.02), changes in glutathione peroxidase levels (P = 0.035), and reduction in lobar functional residual capacity levels (P = 0.00084). In the limited set of responders to NAC therapy, the changes in airway resistance were in the same order as changes induced by budesonide/formoterol. Conclusion: A combination of glutathione, glutathione peroxidase, and imaging parameters could potentially be used to phenotype COPD patients who would benefit from addition of NAC to their current therapy. The findings of this small pilot study need to be confirmed in a larger pivotal trial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327537300001 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 21 Open Access  
  Notes ; JDB is a founder/shareholder of FluidDA NV, Kontich, Belgium. WV, SV, and CVH are employed by FluidDA NV, and WDB is the director of FluidDA NV. PMP and RC have no conflicts of interest to report. The study was supported by Zambon SpA, Bresso, Italy. ; Approved Most recent IF: 3.157; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:112799 Serial 813  
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Poli, G.; De Volder, A.; Ghys, L.; Van Holsbeke, C.; Vinchurkar, S.; De Backer, L.; de Backer, W. pdf  doi
openurl 
  Title Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol Type A1 Journal article
  Year (down) 2013 Publication Respiration Abbreviated Journal Respiration  
  Volume 86 Issue 5 Pages 393-401  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Inhaled formulations using extrafine particles of long-acting beta(2)-agonists and corticosteroids were developed to optimize asthma treatment. Findings that these combinations reach and treat smaller airways more effectively are predominantly based on general non-specific outcomes with little information on regional characteristics. Objectives: This study aims to assess long-term effects of extrafine beclomethasone/formoterol on small airways of asthmatic patients using novel functional imaging methods. Methods: Twenty-four stable asthma patients were subdivided into three groups (steroid naive, n = 7; partially controlled, n = 6; well controlled, n = 11). Current treatment was switched to a fixed combination of extrafine beclomethasone/formoterol (Foster (R); Chiesi Pharmaceuticals, Parma, Italy). Patients underwent lung function evaluation and thorax high-resolution computerized tomography (HRCT) scan. Local airway resistance was obtained from computational fluid dynamics (CFD). Results: After 6 months, the entire population showed improvement in pre-bronchodilation imaging parameters, including small airway volume (p = 0.0007), resistance (p = 0.011), and asthma control score (p = 0.016). Changes in small airway volume correlated with changes in asthma control score (p = 0.004). Forced expiratory volume in 1 s (p = 0.044) and exhaled nitric oxide (p = 0.040) also improved. Functional imaging provided more detail and clinical relevance compared to lung function tests, especially in the well-controlled group where only functional imaging parameters showed significant improvement, while the correlation with asthma control score remained. Conclusions: Extrafine beclomethasone/formoterol results in a significant reduction of small airway obstruction, detectable by functional imaging (HRCT/CFD). Changes in imaging parameters correlated significantly with clinically relevant improvements. This indicates that functional imaging is a useful tool for sensitive assessment of changes in the respiratory system after asthma treatment. Copyright (C) 2013 S. Karger AG, Basel  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Basel Editor  
  Language Wos 000329046200006 Publication Date 2013-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1423-0356;0025-7931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.772 Times cited 30 Open Access  
  Notes ; ; Approved Most recent IF: 2.772; 2013 IF: 2.924  
  Call Number UA @ lucian @ c:irua:113762 Serial 2376  
Permanent link to this record
 

 
Author Van Holsbeke, C.; Vos, W.; van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; de Backer, J.; De Backer, W.; Verhulst, S.L. pdf  doi
openurl 
  Title Functional respiratory imaging as a tool to assess upper airway patency in children with obstructive sleep apnea Type A1 Journal article
  Year (down) 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 14 Issue 5 Pages 433-439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Objective: We aim to investigate if anatomical and functional properties of the upper airway using computerized 3D models derived from computed tomography (CT) scans better predict obstructive sleep apnea (OSA) severity than standard clinical markers. Methods: Consecutive children with suspected OSA underwent polysomnography, clinical assessment of upper airway patency, and a CT scan while awake. A three-dimensional (3D) reconstruction of the pharyngeal airway was built from these images, and computational fluid dynamics modeling of low inspiratory flow was performed using open-source software. Results: Thirty-three children were included (23 boys; mean age, was 6.0 +/- 3.2 y). OSA was diagnosed in 23 patients. Children with OSA had a significantly lower volume of the overlap region between tonsils and the adenoids (median volume, 1408 mm compared to 2173 mm; p = 0.04), a lower mean cross-sectional area at this location (median volume, 69.3 mm(2) compared to 114.3 mm(2); p = 0.04), and a lower minimal cross-sectional area (median volume, 17.9 mm(2) compared to 25.9 mm(2); p = 0.05). Various significant correlations were found between several imaging parameters and the severity of OSA, most pronounced for upper airway conductance (r = -0.46) (p < 0.01) for correlation between upper airway conductance and the apnea-hypopnea index. No differences or significant correlations were observed with clinical parameters of upper airway patency. Preliminary data after treatment showed that none of the patients with residual OSA had their smallest cross-sectional area located in segment 3, and this frequency was significantly lower than in their peers whose sleep study normalized (64%; p = 0.05). Conclusion: Functional imaging parameters are highly correlated with OSA severity and are a more powerful correlate than clinical scores of upper airway patency. Preliminary data also showed that we could identify differences in the upper airway of those subjects who did not benefit from a local upper airway treatment. (c) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000318612100009 Publication Date 2013-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.391 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.391; 2013 IF: 3.100  
  Call Number UA @ lucian @ c:irua:109015 Serial 1302  
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K. doi  openurl
  Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
  Year (down) 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 46 Issue 21 Pages 12162-12169  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000310665000082 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 5 Open Access  
  Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257  
  Call Number UA @ lucian @ c:irua:101411 Serial 2557  
Permanent link to this record
 

 
Author Vinchurkar, S.; De Backer, L.; Vos, W.; Van Holsbeke, C.; de Backer, J.; de Backer, W. doi  openurl
  Title A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients : effect of upper airway morphology and comparison with in vivo data Type A1 Journal article
  Year (down) 2012 Publication Inhalation Toxicology Abbreviated Journal Inhal Toxicol  
  Volume 24 Issue 2 Pages 81-88  
  Keywords A1 Journal article; Pharmacology. Therapy; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Context: Asthma affects 20 million Americans resulting in an economic burden of approximately $18 billion in the US alone (Allergies and Asthma Foundation 2000; National Center for Environmental Health (NCEH) 1999). Research studies based on differences in patient-specific airway morphology for asthma and the associated effect on deposition of inhaled aerosols are currently not available in the literature. Therefore, the role of morphological variations such as upper airway (extrathoracic) occlusion is not well documented. Objective: Functional imaging based computational fluid dynamics (CFD) of the respiratory airways for five asthmatic subjects is performed in this study using computed tomography (CT) based patient-specific airway models and boundary conditions. Methods: CT scans for 5 asthma patients were used to reconstruct 3D lung models using segmentation software. An averaged inhalation profile and patient-specific lobar flow distribution were used to perform the simulation. The simulations were used to obtain deposition for BDP/Formoterol (R) HFA pMDI in the patient-specific airway models. Results: The lung deposition obtained using CFD was in excellent agreement with available in vivo data using the same product. Specifically, CFD resulted in 30% lung deposition, whereas in vivo lung deposition was reported to be approximately 31%. Conclusion: It was concluded that a combination of patient-specific airway models and lobar boundary conditions can be used to obtain accurate lung deposition estimates. Lower lung deposition can be expected for patients with higher extrathoracic resistance. Novel respiratory drug delivery devices need to accommodate population subgroups based on these morphological and anatomical differences in addition to subject age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000299744800001 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-8378;1091-7691; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 36 Open Access  
  Notes ; ; Approved Most recent IF: 1.751; 2012 IF: 1.894  
  Call Number UA @ lucian @ c:irua:96238 Serial 286  
Permanent link to this record
 

 
Author De Backer, L.A.; Vos, W.; de Backer, J.; Van Holsbeke, C.; Vinchurkar, S.; de Backer, W. pdf  doi
openurl 
  Title The acute effect of budesonide/formoterol in COPD : a multi-slice computed tomography and lung function study Type A1 Journal article
  Year (down) 2012 Publication European Respiratory Journal Abbreviated Journal Eur Respir J  
  Volume 40 Issue 2 Pages 298-305  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification of chronic obstructive pulmonary disease (COPD) does not always match with other clinical disease descriptors such as exacerbation frequency and quality of life, indicating that forced expiratory volume in 1 s (FEV1) is not a perfect descriptor of the disease. The aim of this study was to find out whether changes in airway geometry after inhalation of the most commonly used inhalation therapy in severe COPD can more adequately be described with an image-based approach than with spirometry. 10 COPD GOLD stage III patients were assessed in a double-blind crossover study. Airway volumes were analysed using segmentation of multi-slice computed tomography (MSCT) images; airway resistance was determined using computational fluid dynamics (CFD). Distal airway volume significantly increased (p=0.011) in patients 4 h after receiving a budesonide/formoterol combination from 9.6+/-4.67 cm(3) to 10.14+/-4.81 cm(3). Also CFD-determined airway resistance significantly decreased (p=0.047) from 0.051+/-0.021 kPa.s.L-1 to 0.043+/- 0.019 kPa.s.L-1. None of the lung function parameters showed a significant change. Only functional residual capacity (FRC) showed a trend to decline (p=0.056). Only the image-based parameters were able to predict the visit at which the combination product was administered. This study showed that imaging is a sensitive, complementary tool to describe changes in airway structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000307291700006 Publication Date 2011-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.569 Times cited 37 Open Access  
  Notes ; ; Approved Most recent IF: 10.569; 2012 IF: 6.355  
  Call Number UA @ lucian @ c:irua:101113 Serial 3568  
Permanent link to this record
 

 
Author De Backer, L.A.; Vos, W.G.; Salgado, R.; de Backer, J.W.; Devolder, A.; Verhulst, S.L.; Claes, R.; Germonpré, P.R.; de Backer, W.A. url  doi
openurl 
  Title Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD Type A1 Journal article
  Year (down) 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr  
  Volume 6 Issue Pages 637-646  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Salbutamol and ipratropium bromide improve lung function in patients with chronic obstructive pulmonary disease (COPD). However, their bronchodilating effect has not yet been compared in the central and distal airways. Functional imaging using computational fluid dynamics offers the possibility of making such a comparison. The objective of this study was to assess the effects of salbutamol and ipratropium bromide on the geometry and computational fluid dynamics-based resistance of the central and distal airways.Methods: Five patients with Global Initiative for Chronic Obstructive Lung Disease Stage III COPD were randomized to a single dose of salbutamol or ipratropium bromide in a crossover manner with a 1-week interval between treatments. Patients underwent lung function testing and a multislice computed tomography scan of the thorax that was used for functional imaging. Two hours after dosing, the patients again underwent lung function tests and repeat computed tomography.Results: Lung function parameters, including forced expiratory volume in 1 second, vital capacity, overall airway resistance, and specific airway resistance, changed significantly after administration of each product. On functional imaging, the bronchodilating effect was greater in the distal airways, with a corresponding drop in airway resistance, compared with the central airways. Salbutamol and ipratropium bromide were equally effective at first glance when looking at lung function tests, but when viewed in more detail with functional imaging, hyporesponsiveness could be shown for salbutamol in one patient. Salbutamol was more effective in the other patients.Conclusion: This pilot study gives an innovative insight into the modes of action of salbutamol and ipratropium bromide in patients with COPD, using the new techniques of functional imaging and computational fluid dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000208709800068 Publication Date 2011-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 25 Open Access  
  Notes ; ; Approved Most recent IF: 3.157; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:93165 Serial 1300  
Permanent link to this record
 

 
Author De Backer, L.; Vos, W.; Dieriks, B.; Daems, D.; Verhulst, S.; Vinchurkar, S.; Ides, K.; de Backer, J.; Germonpré, P.; de Backer, W. url  doi
openurl 
  Title The effects of long-term noninvasive ventilation in hypercapnic COPD patients : a randomized controlled pilot study Type A1 Journal article
  Year (down) 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr  
  Volume 6 Issue Pages 615-624  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Introduction: Noninvasive ventilation (NIV) is a well-established treatment for acute-on-chronic respiratory failure in hypercapnic COPD patients. Less is known about the effects of a long-term treatment with NIV in hypercapnic COPD patients and about the factors that may predict response in terms of improved oxygenation and lowered CO2 retention.Methods: In this study, we randomized 15 patients to a routine pharmacological treatment (n = 5, age 66 [standard deviation ± 6] years, FEV1 30.5 [±5.1] %pred, PaO2 65 [±6] mmHg, PaCO2 52.4 [±6.0] mmHg) or to a routine treatment and NIV (using the Synchrony BiPAP device [Respironics, Inc, Murrsville, PA]) (n = 10, age 65 [±7] years, FEV1 29.5 [±9.0] %pred, PaO2 59 [±13] mmHg, PaCO2 55.4 [±7.7] mmHg) for 6 months. We looked at arterial blood gasses, lung function parameters and performed a low-dose computed tomography of the thorax, which was later used for segmentation (providing lobe and airway volumes, iVlobe and iVaw) and post-processing with computer methods (providing airway resistance, iRaw) giving overall a functional image of the separate airways and lobes.Results: In both groups there was a nonsignificant change in FEV1 (NIV group 29.5 [9.0] to 38.5 [14.6] %pred, control group 30.5 [5.1] to 36.8 [8.7] mmHg). PaCO2 dropped significantly only in the NIV group (NIV: 55.4 [7.7] → 44.5 [4.70], P = 0.0076; control: 52.4 [6.0] → 47.6 [8.2], NS). Patients actively treated with NIV developed a more inhomogeneous redistribution of mass flow than control patients. Subsequent analysis indicated that in NIV-treated patients that improve their blood gases, mass flow was also redistributed towards areas with higher vessel density and less emphysema, indicating that flow was redistributed towards areas with better perfusion. There was a highly significant correlation between the % increase in mass flow towards lobes with a blood vessel density of >9% and the increase in PaO2. Improved ventilation–perfusion match and recruitment of previously occluded small airways can explain the improvement in blood gases.Conclusion: We can conclude that in hypercapnic COPD patients treated with long-term NIV over 6 months, a mass flow redistribution occurs, providing a better ventilation–perfusion match and hence better blood gases and lung function. Control patients improve homogeneously in iVaw and iRaw, without improvement in gas exchange since there is no improved ventilation/perfusion ratio or increased alveolar ventilation. These differences in response can be detected through functional imaging, which gives a more detailed report on regional lung volumes and resistances than classical lung function tests do. Possibly only patients with localized small airway disease are good candidates for long-term NIV treatment. To confirm this and to see if better arterial blood gases also lead to better health related quality of life and longer survival, we have to study a larger population.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000208709800066 Publication Date 2011-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 3.157; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:93164 Serial 866  
Permanent link to this record
 

 
Author van Holsbeke, C.; de Backer, J.; Vos, W.; Verdonck, P.; van Ransbeeck, P.; Claessens, T.; Braem, M.; Vanderveken, O.; de Backer, W. pdf  doi
openurl 
  Title Anatomical and functional changes in the upper airways of sleep apnea patients due to mandibular repositioning: a large scale study Type A1 Journal article
  Year (down) 2011 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 44 Issue 3 Pages 442-449  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract The obstructive sleep apnea-hypopnea syndrome (OSAHS) is a sleep related breathing disorder. A popular treatment is the use of a mandibular repositioning appliance (MRA) which advances the mandibula during the sleep and decreases the collapsibility of the upper airway. The success rate of such a device is, however, limited and very variable within a population of patients. Previous studies using computational fluid dynamics have shown that there is a decrease in upper airway resistance in patients who improve clinically due to an MRA. In this article, correlations between patient-specific anatomical and functional parameters are studied to examine how MRA induced biomechanical changes will have an impact on the upper airway resistance. Low-dose computed tomography (CT) scans are made from 143 patients suffering from OSAHS. A baseline scan and a scan after mandibular repositioning (MR) are performed in order to study variations in parameters. It is found that MR using a simulation bite is able to induce resistance changes by changing the pharyngeal lumen. The change in minimal cross-sectional area is the best parameter to predict the change in upper airway resistance. Looking at baseline values, the ideal patients for MR induced resistance decrease seem to be women with short airways, high initial resistance and no baseline occlusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000287551000014 Publication Date 2010-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 2.664; 2011 IF: 2.434  
  Call Number UA @ lucian @ c:irua:85305 Serial 112  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Vinchurkar, S.C.; Claes, R.; Drollmann, A.; Wulfrank, D.; Parizel, P.M.; Germonpré, P.; de Backer, W. pdf  doi
openurl 
  Title Validation of computational fluid dynamics in CT-based airway models with SPECT/CT1 Type A1 Journal article
  Year (down) 2010 Publication Radiology Abbreviated Journal Radiology  
  Volume 257 Issue 3 Pages 854-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Purpose: To compare the results obtained by using numerical flow simulations with the results of combined single photon emission computed tomography (SPECT) and computed tomography (CT) and to demonstrate the importance of correct boundary conditions for the numerical methods to account for the large amount of interpatient variability in airway geometry. Materials and Methods: This study was approved by all relevant institutional review boards. All patients gave their signed informed consent. In this study, six patients with mild asthma (three men; three women; overall mean age, 46 years ± 17 [standard deviation]) underwent CT at functional residual capacity and total lung capacity, as well as SPECT/CT. CT data were used for segmentation and computational fluid dynamics (CFD) simulations. A comparison was made between airflow distribution, as derived with (a) SPECT/CT through tracer concentration analysis, (b) CT through lobar expansion measurement, and (c) CFD through flow computer simulation. Also, the heterogeneity of the ventilation was examined. Results: Good agreement was found between SPECT/CT, CT, and CFD in terms of airflow distribution and hot spot detection. The average difference for the internal airflow distribution was less than 3% for CFD and CT versus SPECT/CT. Heterogeneity in ventilation patterns could be detected with SPECT/CT and CFD. Conclusion: This results of this study show that patient-specific computer simulations with appropriate boundary conditions yield information that is similar to that obtained with functional imaging tools, such as SPECT/CT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000284469300031 Publication Date 2010-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8419;1527-1315; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.296 Times cited 100 Open Access  
  Notes ; Supported by Novartis. ; Approved Most recent IF: 7.296; 2010 IF: 6.069  
  Call Number UA @ lucian @ c:irua:85379 Serial 3831  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Burnell, P.; Verhulst, S.L.; Salmon, P.; de Clerck, N.; de Backer, W. doi  openurl
  Title Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques Type A1 Journal article
  Year (down) 2009 Publication The anatomical record: advances in integrative anatomy and evolutionary biology Abbreviated Journal Anat Rec  
  Volume 292 Issue 5 Pages 720-727  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265766000010 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-8486;1932-8494; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.431 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.431; 2009 IF: 1.490  
  Call Number UA @ lucian @ c:irua:76455 Serial 3342  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Germonpré, P.; Salgado, R.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Clinical applications of image-based airway computational fluid dynamics: assessment of inhalation medication and endobronchial devices Type A3 Journal article
  Year (down) 2009 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers Abbreviated Journal  
  Volume 7262 Issue Pages 72621p,1-72621p,9  
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is a technique that is used increasingly in the biomedical field. Solving the flow equations numerically provides a convenient way to assess the efficiency of therapies and devices, ranging from cardiovascular stents and heart valves to hemodialysis workflows. Also in the respiratory field CFD has gained increasing interest, especially through the combination of three dimensional image reconstruction which results in highend patient-specific models. This paper provides an overview of clinical applications of CFD through image based modeling, resulting from recent studies performed in our center. We focused on two applications: assessment of the efficiency of inhalation medication and analysis of endobronchial valve placement. In the first application we assessed the mode of action of a novel bronchodilator in 10 treated patients and 4 controls. We assessed the local volume increase and resistance change based on the combination of imaging and CFD. We found a good correlation between the changes in volume and resistance coming from the CFD results and the clinical tests. In the second application we assessed the placement and effect of one way endobronchial valves on respiratory function in 6 patients. We found a strong patientspecific result of the therapy where in some patients the therapy resulted in complete atelectasis of the target lobe while in others the lobe remained inflated. We concluded from these applications that CFD can provide a better insight into clinically relevant therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2009-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:79497 Serial 374  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Verhulst, S.L.; de Backer, W. doi  openurl
  Title Novel imaging techniques using computer methods for the evaluation of the upper airway in patients with sleep-disordered breathing: a comprehensive review Type A1 Journal article
  Year (down) 2008 Publication Sleep medicine reviews Abbreviated Journal Sleep Med Rev  
  Volume 12 Issue 6 Pages 437-447  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Patients with sleep related breathing disorders (SRBD) can be treated with nasal continuous positive airway pressure (nCPAP) or with several upper airway (UA) interventions. While nCPAP is almost always effective when clinically well tolerated, the therapeutic outcome of UA surgery and UA devices is difficult to predict. The improvement of our capability to perform the latter predictions more accurately is of great clinical importance since it will prevent patients to be treated with ineffective, sometimes irreversible, techniques. In this review we describe the importance of new imaging methods in this respect. We first refer to the most important pathophysiological mechanisms known so far to play a role in SRBD, indicating that functional imaging could elucidate these mechanisms in a patient specific manner. Then we describe the new technologies that make UA imaging more functional referring to the data as they are presently available. Finally we summarise the studies that do indicate that the use of functional imaging of the UA in SRBD patients may significantly help to predict the clinical outcome after UA interventions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000261904500003 Publication Date 2008-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1087-0792; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.958 Times cited 33 Open Access  
  Notes Approved Most recent IF: 8.958; 2008 IF: 6.143  
  Call Number UA @ lucian @ c:irua:71640 Serial 2378  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Gorlé, C.D.; Germonpré, P.; Partoens, B.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Flow analyses in the lower airways: patient-specific model and boundary conditions Type A1 Journal article
  Year (down) 2008 Publication Medical engineering and physics Abbreviated Journal Med Eng Phys  
  Volume 30 Issue 7 Pages 872-879  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is increasingly applied in the respiratory domain. The ability to simulate the flow through a bifurcating tubular system has increased the insight into the internal flow dynamics and the particular characteristics of respiratory flows such as secondary motions and inertial effects. The next step in the evolution is to apply the technique to patient-specific cases, in order to provide more information about pathological airways. This study presents a patient-specific approach where both the geometry and the boundary conditions (BC) are based on individual imaging methods using computed tomography (CT). The internal flow distribution of a 73-year-old female suffering from chronic obstructive pulmonary disease (COPD) is assessed. The validation is performed through the comparison of lung ventilation with gamma scintigraphy. The results show that in order to obtain agreement within the accuracy limits of the gamma scintigraphy scan, both the patient-specific geometry and the BC (driving pressure) play a crucial role. A minimal invasive test (CT scan) supplied enough information to perform an accurate CFD analysis. In the end it was possible to capture the pathological features of the respiratory system using the imaging and computational fluid dynamics techniques. This brings the introduction of this new technique in the clinical practice one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259768300009 Publication Date 2007-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.819 Times cited 82 Open Access  
  Notes Approved Most recent IF: 1.819; 2008 IF: 2.216  
  Call Number UA @ lucian @ c:irua:71693 Serial 1224  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Devolder, A.; Verhulst, S.L.; Germonpré, P.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation Type A1 Journal article
  Year (down) 2008 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 41 Issue 1 Pages 106-113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000253062100014 Publication Date 2007-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 53 Open Access  
  Notes Approved Most recent IF: 2.664; 2008 IF: 2.784  
  Call Number UA @ lucian @ c:irua:64859 Serial 456  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: