toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D. pdf  url
doi  openurl
  Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
  Year (down) 2015 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 112 Issue 112 Pages 213-218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370109200026 Publication Date 2015-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 24 Open Access  
  Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved Most recent IF: 2.714; 2015 IF: 1.845  
  Call Number c:irua:130066 c:irua:130066 Serial 3997  
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J. doi  openurl
  Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
  Year (down) 2011 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 2 Issue 2 Pages 261-272  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000286327600010 Publication Date 2010-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 16 Open Access  
  Notes Approved Most recent IF: 8.668; 2011 IF: 7.525  
  Call Number UA @ lucian @ c:irua:88652 Serial 300  
Permanent link to this record
 

 
Author Yan, L.; Niu, H.; Bridges, C.A.; Marshall, P.A.; Hadermann, J.; Van Tendeloo, G.; Chalker, P.R.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition Type A1 Journal article
  Year (down) 2007 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 46 Issue 24 Pages 4539-4542  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000247500600026 Publication Date 2007-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 16 Open Access  
  Notes Approved Most recent IF: 11.994; 2007 IF: 10.031  
  Call Number UA @ lucian @ c:irua:65593 Serial 3812  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: