toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alloul, A.; Wuyts, S.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria : paving the way for protein production on fermented wastewater Type A1 Journal article
  Year (down) 2019 Publication Water research Abbreviated Journal  
  Volume 152 Issue Pages 138-147  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nutrient losses in our food chain severely surpass our planetary boundaries. Resource recovery can contribute to mitigation, for instance through converting wastewater resources to microbial protein for animal feed. Wastewater typically holds a complex mixture of organics, posing a challenge to selectively produce heterotrophic biomass. Ensuring the product's quality could be achieved by anaerobic generation of volatile fatty acids (VFAs) followed by photoheterotrophic production of purple non-sulfur bacteria (PNSB) with infrared light. This study aimed to determine the most suitable PNSB culture for VFA conversion and map the effect of acetate, propionate, butyrate and a VFA mixture on growth and biomass yield. Six cultures were screened in batch: (i) Rhodopseudomonas palustris, (ii) Rhodobacter sphaeroides, (iii) Rhodospirillum rubrum, (iv) a 3-species synthetic community (i+ii+iii), (v) a community enriched on VFA holding Rb. capsulatus, and (vi) Rb. capsulatus (isolate v). The VFA mixture elevated growth rates with a factor 1.32.5 compared to individual VFA. Rb. capsulatus showed the highest growth rates: 1.82.2 d−1 (enriched) and 2.33.8 d−1 (isolated). In a photobioreactor (PBR) inoculated with the Rb. capsulatus enrichment, decreasing sludge retention time (SRT) yielded lower biomass concentrations, yet increased productivities, reaching 1.7 g dry weight (DW) L−1 d−1, the highest phototrophic rate reported thus far, and a growth rate of up to 5 d−1. PNSB represented 2657% of the community and the diversity index was low (37), with a dominance of Rhodopseudomonas at long SRT and Rhodobacter at short SRT. The biomass yield for all cultures, in batch and reactor cultivation, approached 1 g CODBiomass g−1 CODRemoved. An economic estimation for a two-stage approach on brewery wastewater (load 2427 kg COD d−1) showed that 0.5 d SRT allowed for the lowest production cost ( 10 kg−1 DW; equal shares for capex and opex). The findings strengthen the potential for a novel two-stage approach for resource recovery from industrial wastewater, enabling high-rate PNSB production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458223900013 Publication Date 2018-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156462 Serial 8739  
Permanent link to this record
 

 
Author Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S. pdf  url
doi  openurl
  Title Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.) Type A1 Journal article
  Year (down) 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 147 Issue Pages 376-383  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The surface of the aerial parts of the plant, also termed the phyllosphere, is a selective habitat for microbes. The bacterial composition of the phyllosphere depends on host plant species, leaf characteristics, season, climate, and geographic location of the host plant. In this study, we investigated the effect of an urban environment on the bacterial composition of phyllosphere communities. We performed a passive biomonitoring experiment in which leaves were sampled from ivy (Hedera sp.), a common evergreen climber species, in urban and non-urban locations. Exposure to traffic-generated particulate matter was estimated using leaf biomagnetic analyses. The bacterial community composition was determined using 16S rRNA gene sequencing on the Illumina MiSeq. The phyllosphere microbial communities of ivy differed greatly between urban and non-urban locations, as we observed a shift in several of the dominant taxa: Beijerinckia and Methylocystaceae were most abundant in the non-urban phyllosphere, whereas Hymenobacter and Sphingomonadaceae were dominating the urban ivy phyllosphere. The richness, diversity and composition of the communities showed greater variability in the urban than in the non-urban locations, where traffic-generated PM was lower. Interestingly, the relative abundances of eight of the ten most dominant taxa correlated well with leaf magnetism, be it positive or negative. The results of this study indicate that an urban environment can greatly affect the local phyllosphere community composition. Although other urban-related factors cannot be ruled out, the relative abundance of most of the dominant taxa was significantly correlated with exposure to traffic-generated PM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388543600033 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:136110 Serial 8066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: