toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Abakumov, A.M.; Batuk, D.; Tsirlin, A.A.; Prescher, C.; Dubrovinsky, L.; Sheptyakov, D.V.; Schnelle, W.; Hadermann, J.; Van Tendeloo, G. url  doi
openurl 
  Title Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet Bi4Fe5O13F Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 2 Pages 024423-24429  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the crystal structure and magnetism of the iron-based oxyfluoride Bi4Fe5O13F, a material prototype of the Cairo pentagonal spin lattice. The crystal structure of Bi4Fe5O13F is determined by a combination of neutron diffraction, synchrotron x-ray diffraction, and transmission electron microscopy. It comprises layers of FeO6 octahedra and FeO4 tetrahedra forming deformed pentagonal units. The topology of these layers resembles a pentagonal least-perimeter tiling, which is known as the Cairo lattice. This topology gives rise to frustrated exchange couplings and underlies a sequence of magnetic transitions at T-1 = 62 K, T-2 = 71 K, and T-N = 178 K, as determined by thermodynamic measurements and neutron diffraction. Below T-1, Bi4Fe5O13F forms a fully ordered non-collinear antiferromagnetic structure, whereas the magnetic state between T-1 and T-N may be partially disordered according to the sizable increase in the magnetic entropy at T-1 and T-2. Bi4Fe5O13F reveals unanticipated magnetic transitions on the pentagonal Cairo spin lattice and calls for a further work on finite-temperature properties of this strongly frustrated spin model. DOI: 10.1103/PhysRevB.87.024423  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314224800002 Publication Date 2013-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107688 Serial 1293  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Verbeeck, J.; Gehrke, K.; Moshnyaga, V.; Van Tendeloo, G. url  doi
openurl 
  Title Structural phase transition and spontaneous interface reconstruction in La2/3Ca1/3MnO3/BaTiO3 superlattices Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035418-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (La2/3Ca1/3MnO3)n/(BaTiO3)m (LCMOn/BTOm) superlattices on MgO and SrTiO3 substrates with different layer thicknesses (n = 10, 38, 40 and m = 5, 18, 20) have been grown by metal organic aerosol deposition (MAD) and have been fully characterized down to the atomic scale to study the interface characteristics. Scanning transmission electron microscopy combined with spatially resolved electron energy-loss spectroscopy provides clear evidence for the existence of atomically sharp interfaces in MAD grown films, which exhibit epitaxial growth conditions, a uniform normal strain, and a fully oxidized state. Below a critical layer thickness the LCMO structure is found to change from the bulk Pnma symmetry to a pseudocubic R3̅ c symmetry. An atomically flat interface reconstruction consisting of a single Ca-rich atomic layer is observed on the compressively strained BTO on LCMO interface, which is thought to partially neutralize the total charge from the alternating polar atomic layers in LCMO as well as relieving strain at the interface. No interface reconstruction is observed at the tensile strained LCMO on BTO interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313940400008 Publication Date 2013-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes FWO; Hercules; Countatoms Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:106180 Serial 3245  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H. pdf  doi
openurl 
  Title Functional twin boundaries Type A1 Journal article
  Year (down) 2013 Publication Phase transitions Abbreviated Journal Phase Transit  
  Volume 86 Issue 11 Pages 1052-1059  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000327475900002 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.06; 2013 IF: 1.044  
  Call Number UA @ lucian @ c:irua:107344 Serial 1304  
Permanent link to this record
 

 
Author Maignan, A.; Singh, K.; Simon, C.; Lebedev, O.I.; Martin, C.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Magnetic and magnetodielectric properties of erbium iron garnet ceramic Type A1 Journal article
  Year (down) 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 3 Pages 033905-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An Er3Fe5O12 ceramic has been sintered in oxygen atmosphere at 1400 °C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ([variantgreekepsilon]′) and losses (tan δ) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er3+ spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on [variantgreekepsilon]′ for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal [variantgreekepsilon]′(H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the [variantgreekepsilon]′(H) curve is observed. From this experimental study, it is concluded that the [variantgreekepsilon]′ anomaly, starting above the compensation temperature Tc (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000313670600042 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:106182UA @ admin @ c:irua:106182 Serial 1861  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L. pdf  doi
openurl 
  Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
  Year (down) 2013 Publication Angewandte Chemie Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 5 Pages 1494-1498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000313913300027 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 84 Open Access  
  Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial 2573  
Permanent link to this record
 

 
Author Quintana, M.; López, A.M.; Rapino, S.; Toma, F.M.; Iurlo, M.; Carraro, M.; Sartorel, A.; Maccato, C.; Ke, X.; Bittencourt, C.; Da Ros, T.; Van Tendeloo, G.; Marcaccio, M.; Paolucci, F.; Prato, M.; Bonchio, M.; pdf  doi
openurl 
  Title Knitting the catalytic pattern of artificial photosynthesis to a hybrid graphene nanotexture Type A1 Journal article
  Year (down) 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 7 Issue 1 Pages 811-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The artificial leaf project calls for new materials enabling multielectron catalysis with minimal overpotential, high turnover frequency, and long-term stability. Is graphene a better material than carbon nanotubes to enhance water oxidation catalysis for energy applications? Here we show that functionalized graphene with a tailored distribution of polycationic, quaternized, ammonium pendants provides an sp(2) carbon nanoplatform to anchor a totally inorganic tetraruthenate catalyst, mimicking the oxygen evolving center of natural PSII. The resulting hybrid material displays oxygen evolution at overpotential as low as 300 mV at neutral pH with negligible loss of performance after 4 h testing. This multilayer electroactive asset enhances the turnover frequency by 1 order of magnitude with respect to the isolated catalyst, and provides a definite up-grade of the carbon nanotube material, with a similar surface functionalization. Our innovation is based on a noninvasive, synthetic protocol for graphene functionalization that goes beyond the ill-defined oxidation-reduction methods, allowing a definite control of the surface properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314082800088 Publication Date 2012-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 69 Open Access  
  Notes 246791 COUNTATOMS; 262348 ESMI; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:107707 Serial 1766  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Van Tendeloo, G. pdf  doi
openurl 
  Title How to manipulate nanoparticles with an electron beam? Type A1 Journal article
  Year (down) 2013 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 25 Issue 8 Pages 1114-1117  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000315102600003 Publication Date 2012-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 75 Open Access  
  Notes FWO; VORTEX; Countatoms ECASJO_; Approved Most recent IF: 19.791; 2013 IF: 15.409  
  Call Number UA @ lucian @ c:irua:105287UA @ admin @ c:irua:105287 Serial 1494  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Wiktor, C.; Ramakrishnan, A.; Weßing, J.; Schneemann, A.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1 Type A1 Journal article
  Year (down) 2013 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 49 Issue 5 Pages 463-465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract N-Lewis base mediated room temperature synthesis of covalent organic frameworks (COFs) starting from a solution of building blocks instead of partially soluble building blocks was developed. This protocol shifts COF synthetic chemistry from sealed tubes to open beakers. Non-conventional inclusion compounds of COF-1 were obtained by vapor phase infiltration of ferrocene and azobenzene, and solvation like effects were established.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312193100007 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 17 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 6.319; 2013 IF: 6.718  
  Call Number UA @ lucian @ c:irua:105953 Serial 1815  
Permanent link to this record
 

 
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type A1 Journal article
  Year (down) 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author Lichte, H.; Dunin-Borkowski, R.; Tillmann, K.; Van Aert, S.; Van Tendeloo, G. openurl 
  Title 65th birthdays of W. Owen Saxton, David J. Smith and Dirk Van Dyck / PICO 2013 From multislice to big bang Type ME3 Book as editor
  Year (down) 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ME3 Book as editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:109918 Serial 19  
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year (down) 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 24 Pages 241910  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312490000035 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030  
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G. doi  openurl
  Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
  Year (down) 2012 Publication Journal of advanced microscopy research Abbreviated Journal  
  Volume 7 Issue 2 Pages 84-90  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2012-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Esteem Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:105298 Serial 3932  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Hydrophobic interactions modulate self-assembly of nanoparticles Type A1 Journal article
  Year (down) 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 12 Pages 11059-11065  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanoparticles into 3D clusters with well-controlled sizes. A theoretical description of the process confirmed that hydrophobic interactions are the main driving force behind nanoparticle aggregation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312563600070 Publication Date 2012-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 311 Open Access  
  Notes 267867 Plasma Quo; 246791 Countatoms; 262348 Esmi Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:105292 Serial 1538  
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P. pdf  url
doi  openurl
  Title Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
  Year (down) 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 3 Issue Pages 789-797  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311482400001 Publication Date 2012-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.127; 2012 IF: 2.374  
  Call Number UA @ lucian @ c:irua:105140 Serial 3684  
Permanent link to this record
 

 
Author Sánchez-Muñoz, L.; García-Guinea, J.; Zagorsky, V.Y.; Juwono, T.; Modreski, P.J.; Cremades, A.; Van Tendeloo, G.; de Moura, O.J.M. pdf  doi
openurl 
  Title The evolution of twin patterns in perthitic K-feldspar from garnitic pegmatites Type A1 Journal article
  Year (down) 2012 Publication Canadian mineralogist Abbreviated Journal Can Mineral  
  Volume 50 Issue 4 Pages 989-1024  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Grains of K-feldspar are commonly seen as heterogeneous mixtures of mineral species and varieties with random microstructures. Most consider that observable features arise from incomplete re-equilibrations owing to slow kinetic and localized effects of aqueous fluids (catalyst), with geological environment and chemical impurities playing only a secondary role. Here, an alternative approach is explored by studying well-preserved regularities in the twin patterns of K-feldspars formed in the subsolidus stage from a historical perspective. Selected samples from granitic pegmatites were studied by polarized light optical microscopy (PLOM), electron-probe micro-analysis (EPMA), scanning (SEM) and transmission electron microscopy (TEM), cathodoluminescence imaging (CL), micro-Raman spectroscopy (MRS) and 31P nuclear magnetic resonance (NMR). We have found that the essential feature of this crystalline medium is the astounding capability to recrystallize in self-organized twin patterns. The mechanism involves coupling between short-range atomic motion, and long-range displacive correlations propagated as ideal and non-ideal Albite and Pericline orientations. We suggest a general evolutionary process to explain the development of macroscopic twin patterns in microcline, based on three twin generations as microtwins, macrotwins and cryptotwins. Evolutionary variants also were identified; they depend on both internal crystallochemical features and an external geological stimulus. We suggest a continuous monoclinictriclinic transformation for impure K-feldspar, whereas a discontinuous inversion occurs where the starting composition is close to the ideal chemical formula. Twin patterns can evolve by twin coarsening to single-orientation microcline if the system releases energy, or by twin fragmentation to finely twinned microcline if the system stores energy. Hence, K-feldspar is seen here as a very sensitive medium in which precious geological information is recorded in the form of twin patterns, and thus useful for general geological challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Toronto Editor  
  Language Wos 000314174400015 Publication Date 2012-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4476;1499-1276; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.817 Times cited 11 Open Access  
  Notes Approved Most recent IF: 0.817; 2012 IF: 1.180  
  Call Number UA @ lucian @ c:irua:101781 Serial 1103  
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Carbó-Argibay, E.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G. url  doi
openurl 
  Title Atomic-scale determination of surface facets in gold nanorods Type A1 Journal article
  Year (down) 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 11 Pages 930-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is widely accepted that the physical properties of nanostructures depend on the type of surface facets1, 2. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing3, 4. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials5, 6. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000310434600015 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 261 Open Access  
  Notes 262348 ESMI; Hercules 3; 24691 COUNTATOMS; 267867 PLASMAQUO Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101778 Serial 182  
Permanent link to this record
 

 
Author Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Design of zeolite by inverse sigma transformation Type A1 Journal article
  Year (down) 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 12 Pages 1059-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311432600025 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 140 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101783 Serial 661  
Permanent link to this record
 

 
Author Ati, M.; Sathiya, M.; Boulineau, S.; Reynaud, M.; Abakumov, A.; Rousse, G.; Melot, B.; Van Tendeloo, G.; Tarascon, J.-M. doi  openurl
  Title Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode Type A1 Journal article
  Year (down) 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 44 Pages 18380-18387  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO4F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex synthetic pathway can be simplified. Here, we present our work aiming at better understanding the reaction mechanism that govern its formation as a way to optimize its preparation. We first demonstrate, using complementary X-ray diffraction and transmission electron microscopy studies, that triplite-LiFeSO4F can nucleate from tavorite-LiFeSO4F via a reconstructive process whose kinetics are significantly influenced by moisture and particle morphology. Perhaps the most spectacular finding is that it is possible to prepare electrochemically active triplite-LiFeSO4F from anhydrous precursors using either reactive spark plasma sintering (SPS) synthesis in a mere 20 min at 320 degrees C or room temperature ball milling for 3 h. These new pathways appear to be strongly driven by the easy formation of a disordered phase with higher entropy, as both techniques trigger disorder via rapid annealing steps or defect creation. Although a huge number of phases adopts the tavorite structure-type, this new finding offers both a potential way to prepare new compositions in the triplite structure and a wealth of opportunities for the synthesis of new materials which could benefit many domains beyond energy storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000310720900041 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 36 Open Access  
  Notes Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:105147 Serial 3802  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M. pdf  doi
openurl 
  Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
  Year (down) 2012 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 48 Issue 100 Pages 12159-12161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311411100003 Publication Date 2012-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 39 Open Access  
  Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378  
  Call Number UA @ lucian @ c:irua:105230 Serial 2724  
Permanent link to this record
 

 
Author Vandebroek, M.; Belis, J.; Louter, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title Experimental validation of edge strength model for glass with polished and cut edge finishing Type A1 Journal article
  Year (down) 2012 Publication Engineering fracture mechanics Abbreviated Journal Eng Fract Mech  
  Volume 96 Issue Pages 480-489  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In literature, the experimental validation of a glass edge strength model is lacking. Therefore, in this study, an edge strength model was established and validated. The short-term parameters of the edge strength model, i.e. the flaw geometry and depth, were determined by means of testing at a high stress rate. This was done for polished and cut edges. Next, the strength model, including subcritical crack growth, was established. Finally, the edge strength model was validated by the test results at a low stress rate. The assessed model was found to be slightly conservative, compared to the test results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000313384300034 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7944; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.151 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.151; 2012 IF: 1.413  
  Call Number UA @ lucian @ c:irua:105285 Serial 1145  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P. pdf  doi
openurl 
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year (down) 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 9 Pages 1675-1682  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308942100009 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 31 Open Access  
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year (down) 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year (down) 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 19 Pages 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
  Year (down) 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 18 Issue 35 Pages 10848-10856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307782800013 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 88 Open Access  
  Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831  
  Call Number UA @ lucian @ c:irua:100469 Serial 2007  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.; Van Rompaey, S.; Perkisas, T.; Filinchuk, Y.; Van Tendeloo, G. doi  openurl
  Title Crystal structure of a lightweight borohydride from submicrometer crystallites by precession electron diffraction Type A1 Journal article
  Year (down) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 17 Pages 3401-3405  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction can provide structural information from submicrometer particles of such extremely electron-beam-sensitive materials as complex lightweight hydrides. We expect the precession electron diffraction technique to be a useful tool for nanoscale investigations of thermally unstable lightweight hydrogen-storage materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000308833400012 Publication Date 2012-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:101845 Serial 567  
Permanent link to this record
 

 
Author Charkin, D.O.; Urmanov, A.V.; Kazakov, S.M.; Batuk, D.; Abakumov, A.M.; Knöner, S.; Gati, E.; Wolf, B.; Lang, M.; Shevelkov, A.V.; Van Tendeloo, G.; Antipov, E.V.; doi  openurl
  Title Synthesis, crystal structure, transport, and magnetic properties of novel ternary copper phosphides, A2Cu6P5(A = Sr, Eu) and EuCu4P3 Type A1 Journal article
  Year (down) 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 16 Pages 8948-8955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three new ternary copper phosphides, Sr2Cu6P5, Eu2Cu6P5, and EuCu4P3, have been synthesized from the elements in evacuated silica capsules. Eu2Cu6P5 and Sr2Cu6P5 adopt the Ca2Cu6P5-type structure, while EuCu4P3 is isostructural to BaMg4Si3 and still remains the only representative of this structure type among the ternary Cu pnictides. All three materials show metallic conductivity in the temperature range 2 K <= T <= 290 K, with no indication for superconductivity. For Eu2Cu6P5 and EuCu4P3, long-range magnetic order was observed, governed by 4f local moments on the Eu atoms with predominant ferromagnetic interactions. While Eu2Cu6P5 shows a single ferromagnetic transition at T-C = 34 K, the magnetic behavior of EuCu4P3 is more complex, giving rise to three consecutive magnetic phase transitions at 70, 43, and 18 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000307606200042 Publication Date 2012-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:102217 Serial 3453  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
  Year (down) 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 4 Pages 041907  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000306944700030 Publication Date 2012-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 59 Open Access  
  Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726  
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P. doi  openurl
  Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
  Year (down) 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 16 Pages 2532-2540  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307390300012 Publication Date 2012-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 17 Open Access  
  Notes Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:101104 Serial 2736  
Permanent link to this record
 

 
Author Liu, J.; Jin, J.; Deng, Z.; Huang, S.Z.; Hu, Z.Y.; Wang, L.; Wang, C.; Chen, L.H.; Li, Y.; Van Tendeloo, G.; Su, B.L.; doi  openurl
  Title Tailoring CuO nanostructures for enhanced photocatalytic property Type A1 Journal article
  Year (down) 2012 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 384 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on one-pot synthesis of various morphologies of CuO nanostructures. PEG200 as a structure directing reagent under the synergism of alkalinity by hydrothermal method has been employed to tailor the morphology of CuO nanostructures. The CuO products have been characterized by XRD, SEM, and TEM. The morphologies of the CuO nanostructures can be tuned from 10 (nanoseeds, nanoribbons) to 2D (nanoleaves) and to 3D (shuttle-like, shrimp-like, and nanoflowers) by changing the volume of PEG200 and the alkalinity in the reaction system. At neutral and relatively low alkalinity (OH-/Cu2+ <= 3), the addition of PEG200 can strongly influence the morphologies of the CuO nanostructures. At high alkalinity (OH/Cu2+ >= 4), PEG200 has no influence on the morphology of the CuO nanostructure. The different morphologies of the CuO nanostructures have been used for the photodecomposition of the pollutant rhodamine B (RhB) in water. The photocatalytic activity has been correlated with the different nanostructures of CuO. The 10 CuO nanoribbons exhibit the best performance on the RhB photodecomposition because of the exposed high surface energy {-121} crystal plane. The photocatalytic results show that the high energy surface planes of the CuO nanostructures mostly affect the photocatalytic activity rather than the morphology of the CuO nanostructures. Our synthesis method also shows it is possible to control the morphologies of nanostructures in a simple way. (C) 2012 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308337700001 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 105 Open Access  
  Notes Approved Most recent IF: 4.233; 2012 IF: 3.172  
  Call Number UA @ lucian @ c:irua:101796 Serial 3468  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year (down) 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: