toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R. url  doi
openurl 
  Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
  Year (down) 2022 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 22 Issue 15 Pages 6268-6275  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831832100001 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 8 Open Access OpenAccess  
  Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8  
  Call Number UA @ admin @ c:irua:189495 Serial 7077  
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year (down) 2021 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume 20 Issue 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
 

 
Author Sreepal, V.; Yagmurcukardes, M.; Vasu, K.S.; Kelly, D.J.; Taylor, S.F.R.; Kravets, V.G.; Kudrynskyi, Z.; Kovalyuk, Z.D.; Patane, A.; Grigorenko, A.N.; Haigh, S.J.; Hardacre, C.; Eaves, L.; Sahin, H.; Geim, A.K.; Peeters, F.M.; Nair, R.R. url  doi
openurl 
  Title Two-dimensional covalent crystals by chemical conversion of thin van der Waals materials Type A1 Journal article
  Year (down) 2019 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 19 Issue 9 Pages 6475-6481  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486361900083 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 32 Open Access  
  Notes ; This work was supported by the Royal Society, the European Research Council (contract 679689 and EvoluTEM 715502), and Engineering and Physical Sciences Research Council, U.K. (EP/N013670/1), The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. acknowledges the Flemish Science Foundation (FWO-Vl) for a postdoctoral fellowship. S.J.H. and D.J.K. acknowledge support from EPSRC (EP/P009050/1) and the NowNANO CDT. ; Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:162818 Serial 5431  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: