toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, C.; Ke, X.; Wang, J.; Liang, R.; Luo, Z.; Tian, Y.; Yi, D.; Zhang, Q.; Wang, J.; Han, X.-F.; Van Tendeloo, G.; Chen, L.-Q.; Nan, C.-W.; Ramesh, R.; Zhang, J. url  doi
openurl 
  Title Ferroelastic switching in a layered-perovskite thin film Type A1 Journal article
  Year (down) 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10636  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90 degrees within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.  
  Address Department of Physics, Beijing Normal University, 100875 Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000371020600002 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 40 Open Access  
  Notes The work in Beijing Normal University is supported by the NSFC under contract numbers 51322207, 51332001 and 11274045. J.Z. also acknowledges the support from National Basic Research Program of China, under contract No. 2014CB920902. G.V.T. acknowledges the funding from the European Research Council under the Seventh Framework Program (FP7), ERC Advanced Grant No. 246791-COUNTATOMS. X.K. acknowledges the funding from NSFC (Grant No.11404016) and Beijing University of Technology (2015-RD-QB-19). J.W. acknowledges the funding from NSFC (Grant number 51472140). L.-Q.C. acknowledges the supporting by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417. R.L. acknowledges Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. Z.L. acknowledges the support from the NSFC (No.11374010 and No.11434009). Q.Z. and X.-F.H. acknowledge the funding support from NSFC (Grant No. 11434014). R.R. acknowledges support from the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504. Approved Most recent IF: 12.124  
  Call Number c:irua:130978 Serial 4007  
Permanent link to this record
 

 
Author Zhang, J.; Ke, X.; Gou, G.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.I.; Minor, A.M.; Chu, Y.h.; Van Tendeloo, G.; Ren, X.; Ramesh, R.; pdf  doi
openurl 
  Title A nanoscale shape memory oxide Type A1 Journal article
  Year (down) 2013 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 4 Issue Pages 2768-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm−3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328023900006 Publication Date 2013-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 67 Open Access  
  Notes Countatoms Approved Most recent IF: 12.124; 2013 IF: 10.742  
  Call Number UA @ lucian @ c:irua:111431 Serial 2271  
Permanent link to this record
 

 
Author Ramesh, R.; Subramanian, V.; Van Grieken, R. openurl 
  Title Heavy metal distribution in sediments of Krishna River basin, India Type A1 Journal article
  Year (down) 1990 Publication Environmental geology and water sciences Abbreviated Journal  
  Volume 15 Issue Pages 207-216  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-5146 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116933 Serial 8022  
Permanent link to this record
 

 
Author Ramesh, R.; Subramanian, V.; Van Grieken, R.; Van 't dack, L. pdf  doi
openurl 
  Title The elemental chemistry of sediments in the Krishna River basin, India Type A1 Journal article
  Year (down) 1989 Publication Chemical geology Abbreviated Journal  
  Volume 74 Issue 3/4 Pages 331-341  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Composition of bed, core and suspended sediments collected from Krishna River sediments were studied and the observations are discussed in the light of other Indian rivers, world's average river suspended particles, surficial rock and soils. The contents of V, Cr, Co, Ni, Cu and Zn in the suspended particles are higher in the Krishna River than in the world's average, indicating pollution inputs. Suspended sediments are enriched (5 to 10 times) in all the elements considered relative to bed sediments. Downstream profile and metal/Al ratios of the elements indicate that the mobility of elements within the basin is controlled by basin geology, size and mineralogical characteristics. Good correlations observed for a number of elements point out to their common sink in the clay fraction of the sediments. There is no systematic variation with depth for the major elements and most of the elements are considerably higher compared to estuarine or Bay of Bengal sediments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1989T007000012 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111482 Serial 7885  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: