toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year (down) 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 3 Pages 579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614960600001 Publication Date 2021-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709  
Permanent link to this record
 

 
Author Roose, D.; Leroux, F.; de Vocht, N.; Guglielmetti, C.; Pintelon, I.; Adriaensen, D.; Ponsaerts, P.; van der Linden, A.-M.; Bals, S. doi  openurl
  Title Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale Type A1 Journal article
  Year (down) 2014 Publication Contrast media and molecular imaging Abbreviated Journal Contrast Media Mol I  
  Volume 9 Issue 6 Pages 400-408  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Bio-Imaging lab  
  Abstract In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1week and in the olfactory bulb at 9months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright (c) 2014 John Wiley Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000346172100001 Publication Date 2014-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1555-4309; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 5 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Sofie Thys for her technical support. The UltraVIEW VoX spinning disk confocal microscope was purchased with support of the Hercules Foundation (Hercules Type 1: AUHA 09/001 and AUHA 11/01). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative no. 262348 European Soft Matter Infrastructure, ESMI), the Fund for Scientific Research- Flanders and the Flemish Institute for Science and Technology and the Belgian government through the Interuniversity Attraction Pole Program (IAP- PAI). ; Approved Most recent IF: 3.307; 2014 IF: 2.923  
  Call Number UA @ lucian @ c:irua:122750 Serial 2222  
Permanent link to this record
 

 
Author Roose, D.; Leroux, F.; De Vocht, N.; Guglielmetti, C.; Pintelon, I.; Adriaensen, D.; Ponsaerts, P.; Van der Linden, A.; Bals, S. doi  openurl
  Title Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale Type A1 Journal article
  Year (down) 2014 Publication Contrast Media & Molecular Imaging Abbreviated Journal Contrast Media Mol I  
  Volume 9 Issue 6 Pages 400-408  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond.  
  Address EMAT, University of Antwerp, Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000346172100002 Publication Date 2014-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1555-4309; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 8 Open Access Not_Open_Access  
  Notes IAP-PAI; 262348 ESMI; Hercules Type 1: AUHA 09/001 and AUHA 11/01 Approved Most recent IF: 3.307; 2014 IF: 2.923  
  Call Number UA @ lucian @ Serial 3938  
Permanent link to this record
 

 
Author Tambuyzer, B.R.; Bergwerf, I.; de Vocht, N.; Reekmans, K.; Daans, J.; Jorens, P.G.; Goossens, H.; Ysebaert, D.K.; Chatterjee, S.; Van Marck, E.; Berneman, Z.N.; Ponsaerts, P. doi  openurl
  Title Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation Type A1 Journal article
  Year (down) 2009 Publication Immunology and cell biology Abbreviated Journal Immunol Cell Biol  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although adult and embryonic stem cell-based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell-based therapy for CNS injury will likely be performed using well-characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow-derived stromal cells (BM-SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM-SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM-SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM-SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM-SC in the CNS of immune-competent mice. Moreover, our results suggest that microglia, rather than T-cells, are the major contributors to allograft rejection in the CNS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Adelaide Editor  
  Language Wos 000266208800003 Publication Date 2009-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0818-9641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.557 Times cited 31 Open Access  
  Notes Approved Most recent IF: 4.557; 2009 IF: 4.200  
  Call Number UA @ lucian @ c:irua:74903 Serial 4515  
Permanent link to this record
 

 
Author Bergwerf, I.; de Vocht, N.; Tambuyzer, B.; Verschueren, J.; Reekmans, K.; Daans, J.; Ibrahimi, A.; Van Tendeloo, V.; Chatterjee, S.; Goossens, H.; Jorens, P.G.; Baekelandt, V.; Ysebaert, D.; Van Marck, E.; Berneman, Z.N.; Van Der Linden, A.; Ponsaerts, P. url  doi
openurl 
  Title Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice Type A1 Journal article
  Year (down) 2009 Publication BMC biotechnology Abbreviated Journal Bmc Biotechnol  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Background Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. Results In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-ã-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. Conclusion We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000262698500001 Publication Date 2009-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1472-6750 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.415 Times cited 33 Open Access  
  Notes Approved Most recent IF: 2.415; 2009 IF: 2.723  
  Call Number UA @ lucian @ c:irua:72911 Serial 4527  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: