toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E. pdf  doi
openurl 
  Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
  Year (down) 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 477 Issue Pages 146984-14  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108935900001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200649 Serial 9003  
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year (down) 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Follow the N and P road : high-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management Type A1 Journal article
  Year (down) 2016 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 115 Issue Pages 9-21  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nutrient management is key to secure food production in the context of a growing global population, rising resource scarcity and increasing pressure on the environment. To map the potential towards increasing nutrient use efficiencies and reduce environmental losses, a high-resolution insight of the nitrogen (N) and phosphorus (P) nutrient streams is pivotal. In this study, a substance flow analysis for N and P is presented for the nutrient intensive region of Flanders (6,211,065 inhabitants) in Belgium for the year 2009. A set of 160 nutrient fluxes was quantified throughout 21 economic and environmental compartments, with a particular focus on 10 waste management processes. A total nutrient load of 20 kg N cap(-1) yr(-1) (ca. 73% to the air and 28% to surface waters) and 0.53 kg P cap(-1) yr(-1) (to surface waters) is emitted to the environment; with crop and livestock production as the main contributors (49% of N and 36% of P). The food supply chain revealed a fertilizer-to-consumer efficiency of 14% for N as well as for P, with important losses embedded in waste streams such as excess manure. Advanced manure and waste processing facilities nevertheless offer the opportunity for enhanced nutrient recycling to increase the nutrient use efficiencies and reduce the dependency of inorganic fertilizers. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384852500002 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:137229 Serial 7977  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  openurl
  Title The nitrogen and phosphorus budget of Flanders : a tool for efficient resource management Type P3 Proceeding
  Year (down) 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151142 Serial 8308  
Permanent link to this record
 

 
Author Van Slycken, S.; Witters, N.; Meers, E.; Peene, A.; Michels, E.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Du Laing, G.; Wierinck, I.; Van Dael, M.; Van Passel, S.; Tack, F.M.G. doi  openurl
  Title Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays) Type A1 Journal article
  Year (down) 2013 Publication Environmental Pollution Abbreviated Journal Environ Pollut  
  Volume 178 Issue Pages 375-380  
  Keywords A1 Journal article; Economics  
  Abstract Production of food crops on trace element-contaminated agricultural lands in the Campine region (Belgium) can be problematic as legal threshold values for safe use of these crops can be exceeded. Conventional sanitation of vast areas is too expensive and alternatives need to be investigated. Zea mays on a trace element-contaminated soil in the region showed an average yield of 53 ± 10 Mg fresh or 20 ± 3 Mg dry biomass ha−1. Whole plant Cd concentrations complied with legal threshold values for animal feed. Moreover, threshold values for use in anaerobic digestion were met. Biogas production potential did not differ between maize grown on contaminated and non-contaminated soils. Results suggested favorable perspectives for farmers to generate non-food crops profitably, although effective soil cleaning would be very slow. This demonstrates that a valuable and sustainable alternative use can be generated for moderately contaminated soils on which conventional agriculture is impaired.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000320487700050 Publication Date 2013-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.099 Times cited 30 Open Access  
  Notes ; This research was funded by the Institute for the promotion of Innovation by Science and Technology in Flanders (IWT-Flanders, Grant IWT/CLO/50702). We want to thank OVAM, as the planting and management of this site is part of a demonstration project in the context of the INTERREG-project BENEKEMPEN. Also many thanks to laboratory staff of the departments and to Pioneer and KWS for providing the seeds. ; Approved Most recent IF: 5.099; 2013 IF: 3.902  
  Call Number UA @ admin @ c:irua:129870 Serial 6247  
Permanent link to this record
 

 
Author Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J. doi  openurl
  Title Phytoremediation, a sustainable remediation technology? 2 : economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production Type A1 Journal article
  Year (down) 2012 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 39 Issue Pages 470-477  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO2. Converting this in economic numbers through the Marginal Abatement Cost of CO2 ( 20 ton−1) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO2 abatement when using phytoremediation crops for land management ranges between 55 and 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over normal biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302829900054 Publication Date 2011-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 38 Open Access  
  Notes ; ; Approved Most recent IF: 3.219; 2012 IF: 2.975  
  Call Number UA @ admin @ c:irua:129863 Serial 6236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: