toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ludu, A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Vortex states in axially symmetric superconductors in applied magnetic field Type A1 Journal article
  Year (down) 2012 Publication Sn – 0378-4754 Abbreviated Journal Math Comput Simulat  
  Volume 82 Issue 7 Pages 1258-1270  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. We present examples of the resulting vortex structure for a solid and perforated superconducting cylinder. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303097000009 Publication Date 2012-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4754; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.218 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.218; 2012 IF: 0.836  
  Call Number UA @ lucian @ c:irua:98300 Serial 3887  
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
  Year (down) 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 51 Issue 8 Pages 082903,1-082903,29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000281905000026 Publication Date 2010-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291  
  Call Number UA @ lucian @ c:irua:84880 Serial 106  
Permanent link to this record
 

 
Author Ludu, A. url  doi
openurl 
  Title Fiber bundle description of flow and nonlinear hydrodynamics on circles Type A1 Journal article
  Year (down) 2008 Publication Journal of nonlinear mathematical physics Abbreviated Journal J Nonlinear Math Phy  
  Volume 15 Issue Pages 157-170  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a differential geometry description of the path lines, stream lines and particles contours in hydrodynamics. We present a generalized form of a Korteweg-de Vries type of equation for the exterior of a circle. Nonlinearities from the boundary conditions, surface tension and the Euler equations are taken into account, but the flow is considered inviscid and irrotational. For the circular case we describe the traveling waves shapes, solitons and the particles trajectories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263517200012 Publication Date 2008-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1402-9251;1776-0852; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.986 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.986; 2008 IF: 0.760  
  Call Number UA @ lucian @ c:irua:94603 Serial 1189  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: