toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
  Year (down) 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 6 Pages 3327-3338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459584900049 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 5 Open Access OpenAccess  
  Notes ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:158625 Serial 5244  
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year (down) 2018 Publication ACS applied energy materials Abbreviated Journal  
  Volume 1 Issue 4 Pages 1549-1558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458705400020 Publication Date 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157642 Serial 8487  
Permanent link to this record
 

 
Author Mefford, J.T.; Rong, X.; Abakumov, A.M.; Hardin, W.G.; Dai, S.; Kolpak, A.M.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Water electrolysis on La1-xSrxCoO3-\delta perovskite electrocatalysts Type A1 Journal article
  Year (down) 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 11053  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B-O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co-O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1 – xSrxCoO3 – delta. We attempt to rationalize the high activities of La1 – xSrxCoO3 – delta through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372721700001 Publication Date 2016-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 278 Open Access  
  Notes Financial support for this work was provided by the R.A. Welch Foundation (grants F-1529 and F-1319). X.R. and A.M.K. acknowledge support from the Skoltech-MIT Center for Electrochemical Energy Storage. Computations were performed using computational resources from XSEDE and NERSC. S.D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. We thank D.W. Redman for help with the RHE measurements. Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:133242 Serial 4276  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: