toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Duarte, M.; Daems, N.; Hereijgers, J.; Arenas Esteban, D.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor Type A1 Journal article
  Year (down) 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 50 Issue Pages 101583-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract As part of a mitigation and adaptation approach to increasing carbon dioxide atmospheric concentrations, we report superior performance of various metal-nitrogen-doped carbon catalysts, synthesized using an easily up-scalable method, for the electrochemical reduction to carbon monoxide and/or formate at industrially relevant current densities up to 200 mAcm−2. Altering the embedded transition metal (i.e. Sn, Co, Fe, Mn and Ni) allowed to tune the selectivity towards the desired product. Mn-N-C and Fe-N-C performance was compromised by its high CO* binding energy, while Co-N-C catalyzed preferentially the HER. Ni-N-C and Sn-N-C revealed to be promising electrocatalysts, the latter being evaluated for the first time in a flow reactor. A productivity of 589 L CO m-2 h-1 at -1.39 VRHE with Ni-N-C and 751 g HCOO- m-2 h-1 at -1.47 VRHE with Sn-N-C was achieved with no signs of degradation detected after 24 h of operation at industrially relevant current densities (100 mAcm−2). Stable operation at 200 mAcm−2 led to turnover frequencies for the production of carbon products of up to 5176 h-1. These enhanced productivities, in combination with high stability, constitute an essential step towards the scalability and ultimately towards the economical valorization of CO2 electrolyzers using metal-containing nitrogen-doped catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670316000002 Publication Date 2021-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 14 Open Access OpenAccess  
  Notes The authors acknowledge sponsoring from the Research Foundation – Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-financed by the European Fund for Regional Development in the frame of subsidiary contract nr. 2S03-019. This work was further performed in the framework of the Catalisti MOT project D2M (“Dioxide to Monoxide (D2M): Innovative catalysis for CO2 to CO conversion”). We thank Lien Pacquets for analyzing the samples with SEM-EDX, Saskia Defoss´e for helping with the N2 physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. Approved Most recent IF: 4.292  
  Call Number UA @ admin @ c:irua:178151 Serial 6779  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year (down) 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial 6432  
Permanent link to this record
 

 
Author Anitha, A.; Brasoveanu, A.; Duarte, M.; Hughes, S.; Daubechies, I.; Dik, J.; Janssens, K.; Alfeld, M. pdf  doi
openurl 
  Title Restoration of X-ray fluorescence images of hidden paintings Type A1 Journal article
  Year (down) 2013 Publication Signal processing Abbreviated Journal Signal Process  
  Volume 93 Issue 3 Pages 592-604  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper describes our methods for repairing and restoring images of hidden paintings (paintings that have been painted over and are now covered by a new surface painting) that have been obtained via noninvasive X-ray fluorescence imaging of their canvases. This recently developed imaging technique measures the concentrations of various chemical elements at each two-dimensional spatial location across the canvas. These concentrations in turn result from pigments present both in the surface painting and in the hidden painting beneath. These X-ray fluorescence images provide the best available data from which to noninvasively study a hidden painting. However, they are typically marred by artifacts of the imaging process, features of the surface painting, and areas of information loss. Repairing and restoring these images thus consists of three stages: (1) repairing acquisition artifacts in the dataset, (2) removal of features in the images that result from the surface painting rather than the hidden painting, and (3) identification and repair of areas of information loss. We describe methods we have developed to address each of these stages: a total-variation minimization approach to artifact correction, a novel method for underdetermined blind source separation with multimodal side information to address surface feature removal, and two application-specific new methods for automatically identifying particularly thick or X-ray absorbent surface features in the painting. Finally, we demonstrate the results of our methods on a hidden painting by the artist Vincent van Gogh. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312521400007 Publication Date 2012-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1684 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.11 Times cited 13 Open Access  
  Notes ; Marco F. Duarte was supported during this research by NSF Supplemental Funding DMS-0439872 to UCLA-IPAM, PI: R. Caflisch. Matthias Alfeld receives support in the form of a Ph.D. fellowship of the Research Foundation Flanders (FWO). This research was also supported by the Interuniversity Attraction Poles Programme Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. ; Approved Most recent IF: 3.11; 2013 IF: 2.238  
  Call Number UA @ admin @ c:irua:105921 Serial 5817  
Permanent link to this record
 

 
Author Anitha, A.; Brasoveanu, A.; Duarte, M.F.; Hughes, S.M.; Daubechies, I.; Dik, J.; Janssens, K.; Alfeld, M. openurl 
  Title Virtual underpainting reconstruction from X-ray fluorescence imaging data Type P1 Proceeding
  Year (down) 2011 Publication Abbreviated Journal  
  Volume Issue Pages 1239-1243  
  Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:124612 Serial 5905  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: