|   | 
Details
   web
Records
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G.
Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
Year (down) 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal
Volume Issue Pages 45-48
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117703800012 Publication Date 2023-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202839 Serial 9079
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G.
Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
Year (down) 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 198 Issue Pages 108458-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876289800003 Publication Date 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.7
Call Number UA @ admin @ c:irua:191556 Serial 7312
Permanent link to this record