toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, P.Z.; Yagmurcukardes, M.; Zhang, R.; Kuang, W.J.; Lozada-Hidalgo, M.; Liu, B.L.; Cheng, H.-M.; Wang, F.C.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Exponentially selective molecular sieving through angstrom pores Type A1 Journal article
  Year (down) 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 7170  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme, exponentially large selectivity combined with high flow rates. No such pores have been demonstrated experimentally. Here we study gas transport through individual graphene pores created by low intensity exposure to low kV electrons. Helium and hydrogen permeate easily through these pores whereas larger species such as xenon and methane are practically blocked. Permeating gases experience activation barriers that increase quadratically with molecules' kinetic diameter, and the effective diameter of the created pores is estimated as similar to 2 angstroms, about one missing carbon ring. Our work reveals stringent conditions for achieving the long sought-after exponential selectivity using porous two-dimensional membranes and suggests limits on their possible performance. Two-dimensional membranes with angstrom-sized pores are predicted to combine high permeability with exceptional selectivity, but experimental demonstration has been challenging. Here the authors realize angstrom-sized pores in monolayer graphene and demonstrate gas transport with activation barriers increasing quadratically with the molecular kinetic diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728562700016 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184840 Serial 6989  
Permanent link to this record
 

 
Author Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T.Y.; Guarochico, V.; Cai, J.; Neumann, C.; Winter, A.; Mohn, M.; Lee, J.H.; Lin, J.; Kaiser, U.; Grigorieva, I., V; Suenaga, K.; Ozyilmaz, B.; Cheng, H.-M.; Ren, W.; Turchanin, A.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  url
doi  openurl
  Title Proton and Li-Ion permeation through graphene with eight-atom-ring defects Type A1 Journal article
  Year (down) 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 6 Pages 7280-7286  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes similar to 1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of similar to 0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543744100086 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 34 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, EPSRC-EP/N010345/1, the European Research Council, the Graphene Flagship, the Deutsche Forschungsgemeinschaft project TRR 234 “CataLight” (Project B7, Grant No. 364549901), and the research infrastructure Grant No. INST 275/25 7-1 FUGG. E.G. and L.M. acknowledge the EPSRC NowNANO programme for funding. ; Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:170708 Serial 6586  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: