toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
  Year (down) 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 1 Pages 015014  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582820500001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 2 Open Access OpenAccess  
  Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:173507 Serial 6696  
Permanent link to this record
 

 
Author Gjerding, M.N.; Cavalcante, L.S.R.; Chaves, A.; Thygesen, K.S. pdf  url
doi  openurl
  Title Efficient Ab initio modeling of dielectric screening in 2D van der Waals materials : including phonons, substrates, and doping Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 21 Pages 11609-11616  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The quantum electrostatic heterostructure (QEH) model allows for efficient computation of the dielectric screening properties of layered van der Waals (vdW)-bonded heterostructures in terms of the dielectric functions of the individual two-dimensional (2D) layers. Here, we extend the QEH model by including (1) contributions to the dielectric function from infrared active phonons in the 2D layers, (2) screening from homogeneous bulk substrates, and (3) intraband screening from free carriers in doped 2D semiconductor layers. We demonstrate the potential of the extended QEH model by calculating the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN heterostructures, the effect of substrate screening on the exciton series of monolayer MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is distributed as a Python package with a simple command line interface and a comprehensive library of dielectric building blocks for the most common 2D materials, providing an efficient open platform for dielectric modeling of realistic vdW heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614615900022 Publication Date 2020-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:176187 Serial 7852  
Permanent link to this record
 

 
Author Cavalcante, L.S.R.; Chaves, A.; Van Duppen, B.; Peeters, F.M.; Reichman, D.R. pdf  url
doi  openurl
  Title Electrostatics of electron-hole interactions in van der Waals heterostructures Type A1 Journal article
  Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427983700007 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Discussions with A. Chernikov and A. Raja are gratefully acknowledged. This work has been financially supported by CNPq, through the PRONEX/FUNCAP, PQ, and Science Without Borders programs, and the FWO-CNPq bilateral program between Brazil and Flanders. B.V.D. acknowledges support from the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. D.R.R. was supported by NSF CHE-1464802. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150835UA @ admin @ c:irua:150835 Serial 4953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: