toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sasaki, S.; Giri, S.; Cassidy, S.J.; Dey, S.; Batuk, M.; Vandemeulebroucke, D.; Cibin, G.; Smith, R.I.; Holdship, P.; Grey, C.P.; Hadermann, J.; Clarke, S.J. url  doi
openurl 
  Title Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures Type A1 Journal article
  Year (down) 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 2917-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr(2)MnO(2)Cu(1.5)Ch(2) (Ch=S, Se) into Cu-deintercalated phases where antifluorite type [Cu(1.5)Ch(2)](2.5-) slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr(2)MnO(2)Ch(2) slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures. Low temperature chemical transformations of solids using high-energy intermediates have enabled the synthesis of a new series of layered oxide chalcogenide containing oxidised chalcogenide dimers promising a new range of solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024186000011 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:199281 Serial 8832  
Permanent link to this record
 

 
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
  Year (down) 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 21 Pages 15898-15912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588738100035 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number EMAT @ emat @c:irua:176058 Serial 6704  
Permanent link to this record
 

 
Author Cassidy, S.J.; Pitcher, M.J.; Lim, J.J.K.; Hadermann, J.; Allen, J.P.; Watson, G.W.; Britto, S.; Chong, E.J.; Free, D.G.; Grey, C.P.; Clarke, S.J. url  doi
openurl 
  Title Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations Type A1 Journal article
  Year (down) 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 6 Pages 3838-3850  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chemical accessibility of the Celv oxidation state enables redox chemistry to be performed on the naturally coinagemetal -deficient phases CeM1-xSO (M = Cu, Ag). A metastable black compound with the PbFC1 structure type (space group P4/nmm: a = 3.8396(1) angstrom, c = 6.607(4) angstrom, V = 97.40(6) angstrom(3)) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the highresolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A strawcolored compound with the filled PbFCI (i.e., ZrSiCuAs- or HfCuSi2type) structure (space group P4/nmm: a = 3.98171(1) angstrom, c = 8.70913(5) angstrom, V = 138.075(1) angstrom 3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAga8S0 or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce' compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce' in the presence of sulfide (S2-). Comparison of the behavior of CeCu0.8SO with that of CeCu0.8SO reveals much slower reaction kinetics associated with the Cu,_xS layers, and this enables intermediate CeCui LixSO phases to be isolated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461978700036 Publication Date 2019-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes ; We thank the UK EPSRC (EP/M020517/1 and EP/P018874/1), the Leverhulme Trust (RPG-2014-221), and Science Foundation Ireland (Grant 12/IA/1414) for funding and the EPSRC for additional studentship support. We acknowledge the ISIS pulsed neutron and muon source and the Diamond Light Source Ltd. (EE13284 and EE18786) and the ESRF for the award of beam time. We thank Dr. R I. Smith for assistance on the neutron beamlines, Dr. A. Baker and Dr. C. Murray for support on III, and Dr. C. Curls for support on ID31. ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:159426 Serial 5253  
Permanent link to this record
 

 
Author Cassidy, S.J.; Orlandi, F.; Manuel, P.; Hadermann, J.; Scrimshire, A.; Bingham, P.A.; Clarke, S.J. url  doi
openurl 
  Title Complex Magnetic Ordering in the Oxide Selenide Sr2Fe3Se2O3 Type A1 Journal article
  Year (down) 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 16 Pages 10312-10322  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000442489100078 Publication Date 2018-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access OpenAccess  
  Notes ; S. J. Cassidy prepared the samples and performed the diffraction and magnetometry measurements. F.O., P.M., and S. J. Cassidy measured and interpreted the NPD data. J.H. performed and interpreted the electron diffraction measurements. A.S. and P.A.B. performed and interpreted the Mossbauer spectroscopy measurements. S. J. Cassidy and S. J. Clarke conceived the project and wrote the paper with input from all co-authors. We acknowledge the financial support of the EPSRC (Grants EP/I017844/1, EP/P018874/1, and EP/ M020517/1), and the Leverhulme Trust (RPG-2014-221). We thank the ESTEEM2 network for enabling the electron microscopy investigations, the ISIS facility for the award of beamtime on WISH (RB1610357), and the Diamond Light Source Ltd. for the award of beam time on I11 (allocation EE13284). We thank Dr. C. Murray, Dr. S. Day and Dr. A. Baker for assistance on I11 and Dr. M. Coduri and Dr. A. N. Fitch for assistance on ID22. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:153723 Serial 5085  
Permanent link to this record
 

 
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J. pdf  doi
openurl 
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year (down) 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10714-10726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.  
  Address Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385785700085 Publication Date 2016-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312  
Permanent link to this record
 

 
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.; url  doi
openurl 
  Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type A1 Journal article
  Year (down) 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 041520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353828400027 Publication Date 2015-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:126021 Serial 3049  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: