toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year (down) 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G. url  doi
openurl 
  Title Tuning the intrinsic anisotropy with disorder in the CaKFE₄As₄ superconductor Type A1 Journal article
  Year (down) 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 6 Pages 064046-64049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the anisotropy of the London penetration depth of CaKFe4As4, discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe4As4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T-c approximate to 35 K. The London penetration depth lambda(L) is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions lambda(L,ab) and lambda(L,c) and obtain the anisotropy parameter gamma(lambda) = lambda(L,c)/lambda(L,ab). The gamma(lambda) (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of gamma(lambda) (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as gamma(lambda) on application-related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe4As4 in the production of wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540915800003 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 4 Open Access  
  Notes ; This work was partially supported by the Italian Ministry of Education, University and Research (Project PRIN “HIBiSCUS,” Grant No. 201785KWLE). J.B. acknowledges the support of a postdoctoral fellowship of the Research Foundation-Flanders (FWO). The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Work done at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 702.a03.21.0005). ; Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:170178 Serial 6641  
Permanent link to this record
 

 
Author Gvozdetskyi, V.; Bhaskar, G.; Batuk, M.; Zhao, X.; Wang, R.; Carnahan, S.L.; Hanrahan, M.P.; Ribeiro, R.A.; Canfield, P.C.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J.V. url  doi
openurl 
  Title Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs Type A1 Journal article
  Year (down) 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 58 Issue 44 Pages 15855-15862  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel lithium nickel boride polymorphs RT-LiNiB and HT-LiNiB with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized via a hydride route with LiH precursor as a lithium source. Being unique among the known ternary transition metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers, composed of Ni hexagonal rings centered by B-B pairs. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction data, solid-state 7Li and 11B NMR, scanning transmission electron microscopy, quantum chemistry calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors to further study their exfoliation, paving a way toward two-dimensional transition metal borides, MBenes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000491219600038 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4411. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract #DE-AC02-07CH11358. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:164752 Serial 5433  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: