toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Čevik, U.; Akbulut, S.; Makarovska, Y.; Van Grieken, R. pdf  doi
openurl 
  Title Polarized-beam high-energy EDXRF in geological samples Type A1 Journal article
  Year (down) 2013 Publication Spectroscopy letters Abbreviated Journal  
  Volume 46 Issue 1 Pages 36-46  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Certified reference materials (NIST 1645, BCR 143, IAEA 7, BCR 141, NIESCRM02, and IAEA 375) were used for determining the performance of a secondary target energy-dispersive X-ray fluorescence (EDXRF) spectrometer, Epsilon 5 (PANalytical, Almelo, the Netherlands). For the evaluation of the EDXRF spectra with polarized-beam high-energy excitation, the WinAxil software package has been applied. The results showed that Epsilon 5, EDXRF spectrometry is favorable for the determination of elemental concentrations in geological samples, but the sample preparation has the largest influence on the precision. However, they presented good agreement with certified values for most of the elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314018900005 Publication Date 2013-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-7010 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:106754 Serial 8392  
Permanent link to this record
 

 
Author Akbulut, S.; Krupinska, B.; Worobiec, A.; Čevik, U.; Taskin, H.; Van Grieken, R.; Samek, L.; Wiłkojć, E. pdf  doi
openurl 
  Title Gross alpha and beta activities of airborne particulate samples from Wawel Royal Castle Museum in Cracow, Poland Type A1 Journal article
  Year (down) 2013 Publication Journal of radioanalytical and nuclear chemistry Abbreviated Journal  
  Volume 295 Issue 2 Pages 1567-1573  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I geo) enables the assessment of contamination by comparing current and pre-industrial concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313713300105 Publication Date 2012-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-5731; 1588-2780 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:106763 Serial 8012  
Permanent link to this record
 

 
Author Akbulut, S.; Van Grieken, R.; Kilic, M.A.; Čevik, U.; Rotondo, G.G. pdf  doi
openurl 
  Title Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods Type A1 Journal article
  Year (down) 2013 Publication Environmental monitoring and assessment Abbreviated Journal  
  Volume 185 Issue 3 Pages 2377-2394  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I geo) enables the assessment of contamination by comparing current and pre-industrial concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314033300029 Publication Date 2012-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-2026; 1573-2967 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:106755 Serial 8052  
Permanent link to this record
 

 
Author Čevik, U.; Damla, N.; Van Grieken, R.; Vefa Akpinar, M. pdf  doi
openurl 
  Title Chemical composition of building materials used in Turkey Type A1 Journal article
  Year (down) 2011 Publication Construction and building materials Abbreviated Journal  
  Volume 25 Issue 4 Pages 1546-1552  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The main goal of this work was to determine the chemical composition of building materials used in Turkey by utilizing energy dispersive X-ray fluorescence (EDXRF) spectrometry. Gas concrete, cement, sand, bricks, roofing tiles, marble, lime and gypsum materials were selected as building materials for this research. The chemical contents and their trace concentrations of the selected samples were determined. The most abundant oxides measured were generally SiO2, Al2O3, CaO, MgO, Fe2O3, K2O and SO3 for all samples. While the main chemical component of gas concrete, cement, sand and marble samples were SiO2 and CaO, brick and roofing tile mainly consisted of SiO2 and Al2O3. CaO and SO3 were major component of lime and gypsum samples, respectively. For U and Th concentrations in the samples, activities of 226Ra and 232Th were measured by utilizing gamma spectrometry. ANOVA and Pearson correlation analyses were performed on the studied data for statistical analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287379300007 Publication Date 2010-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:86448 Serial 7653  
Permanent link to this record
 

 
Author Čevik, U.; Koz, B.; Makarovska, Y. pdf  doi
openurl 
  Title Heavy metal analysis around Iskenderun Bay in Turkey Type A1 Journal article
  Year (down) 2010 Publication X-ray spectrometry Abbreviated Journal  
  Volume 39 Issue 3 Pages 202-207  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The heavy metal analysis around Iskenderun Bay in Turkey was carried out using mosses, soils, mussels, and sediments. This region is one of the most industrial areas of Turkey, including iron-steel plants, beverage, liquefied petroleum gas (LPG) plants, and oil transfer docks. Energy dispersive X-ray fluorescence spectrometry (Epsilon 5, PANalytical, Almelo, The Netherlands) was used to analyze all samples. V, Cr, Mn, Fe, Ni, Cu, Zn, As, and Pb elements were observed in all samples studied. Although Ce was detected in some mosses and soils, Sn was detected only in some moss samples. Pb concentrations in the moss samples are higher than the soil, the mussel, and the sediment samples. This can be attributed to the mosses that absorb heavy metals such as Pb easily from the air. As the aim of this study was to analyze heavy metals, the evaluation of these elements with their potential hazards for ecology and humans is briefly discussed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277637400006 Publication Date 2010-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:82678 Serial 8020  
Permanent link to this record
 

 
Author Damla, N.; Čevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R. pdf  doi
openurl 
  Title Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey Type A1 Journal article
  Year (down) 2010 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 176 Issue 1/3 Pages 644-649  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Raeq), gamma index (Iγ) and alpha index (Iα) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Raeq values of cement are lower than the limit of 370 Bq kg−1, equivalent to a gamma dose of 1.5 mSv y−1. Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274839700087 Publication Date 2009-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:80671 Serial 8448  
Permanent link to this record
 

 
Author Damla, N.; Čevik, U.; Kobya, A.I.; Celik, A.; Van Grieken, R.; Kobya, Y. pdf  doi
openurl 
  Title Characterization of gas concrete materials used in buildings of Turkey Type A1 Journal article
  Year (down) 2009 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 168 Issue 2/3 Pages 681-687  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The activity concentration of 226Ra, 232Th and 40K in gas concrete samples collected from different suppliers and some provinces in Turkey were measured using gamma-ray spectrometry. Knowledge of radioactivity in gas concrete used in building materials enables one to assess any possible radiological risks to human health. The mean activity concentrations observed in the gas concrete samples were 82.0, 28.2 and 383.9 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The radium equivalent activity, external and internal hazard indices as well as terrestrial absorbed dose and annual effective dose rate was calculated. The results indicate that the radium equivalent activity values of gas concrete samples are lower than the limit of 370 Bq kg−1, equivalent to a gamma-dose of 1.5 mSv y−1. Moreover, mass attenuation coefficients were measured in some gas concrete samples. It was found that the mass attenuation coefficients decreased with increasing photon energies. Also, chemical compositions and structural analysis (XRD and SEM) of the gas concrete samples were investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000268200700014 Publication Date 2009-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:77256 Serial 7621  
Permanent link to this record
 

 
Author Karabidak, S.M.; Čevik, U.; Kaya, S. pdf  doi
openurl 
  Title A new method to compensate for counting losses due to system dead time Type A1 Journal article
  Year (down) 2009 Publication Nuclear instruments and methods in physics research : A: accelerators, spectrometers, detectors and associated equipment Abbreviated Journal  
  Volume 603 Issue 3 Pages 361-364  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Determination of count losses and pile-up pulse effects in quantitative and qualitative analysis became a vital step in various analyses. Therefore, compensating for counting losses is of importance. These counting losses are due to the pulse pile-up, paralyzable and non-paralyzable system dead time or a combination of these mechanisms. In this work, a new method is suggested for the correction of dead time losses resulting from the above mechanisms. For this purpose, a source code was developed. It was found that the peaking time was an important parameter over system dead time. The method suggested seems to be more effective even at high count rate. (C) 2009 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000266829400021 Publication Date 2009-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94550 Serial 8304  
Permanent link to this record
 

 
Author Baltas, H.; Čevik, U. pdf  doi
openurl 
  Title Variation of K X-ray fluorescence cross-sections of Cu, Y and Ba in YBa2Cu3O7-\delta superconductor Type A1 Journal article
  Year (down) 2009 Publication Solid state communications Abbreviated Journal  
  Volume 149 Issue 5/6 Pages 231-235  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract K X-ray fluorescence cross-sections of Cu, Y and Ba elements were measured in CuO, Y(2)O(3), BaCO(3) Compounds and YBa(2)Cu(3)O(7-delta) superconductor samples (nonreacted agent, calcined and sintered states). A superconductor sample of YBa(2)Cu(3)O(7-delta) was prepared by using a solid-state reaction technique. The samples were excited by gamma rays of energy 59.5 keV from a (241)Am radioisotope source. The Cu, Y and Ba K X-ray intensities counted with a Si(Li) detector were measured in different solid-state conditions. The obtained values of K X-ray fluorescence cross-section were compared with the theoretical values of pure Cu, Y and Ba elements. We found that the K X-ray fluorescence cross-section of Cu, Y and Ba in YBa(2)Cu(3)O(7-delta) sample is changed in different solid-state conditions, depending on the mixture (nonreacted agent), calcined and sintered states. (c) 2008 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262795900013 Publication Date 2008-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94568 Serial 8735  
Permanent link to this record
 

 
Author Celik, N.; Čevik, U.; Celik, A.; Koz, B. pdf  doi
openurl 
  Title Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey Type A1 Journal article
  Year (down) 2009 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 162 Issue 1 Pages 146-153  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present work, naturally occurring radionuclides of (226)Ra, (232)Th and (40)K were measured in soil samples collected from the Eastern Black Sea region of Turkey. It was found that the activity concentrations ranged from 12 to 120 Bq kg(-1) for (226)Ra, from 13 to 121 Bq kg(-1) for (232)Th and from 204 to 1295 Bq kg(-1) for (40)K. Besides naturally occurring radionuclides, (137)Cs activity concentration was measured in soil, lichen and moss samples and it was found that (137)Cs activity concentration ranged from 27 to 775 Bq kg(-1) with for soil, from 29 to 879 Bq kg(-1) for lichen and from 67 to 1396 Bq kg(-1) for moss samples. Annual effective doses due to the naturally occurring radionuclides and (137)CS were estimated. Ecological half-lives of (137)CS in lichen and moss species were estimated. The decrease of the activity concentrations in the present measurements (2007) relative to those in 1993 indicated ecological half-lives between 1.36 and 2.96 years for lichen and between 1.35 and 2.85 years for moss species. (C) 2008 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263149400019 Publication Date 2008-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94562 Serial 8296  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: