toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Graham, B.; Guyon, P.; Maenhaut, W.; Taylor, P.E.; Ebert, M.; Matthias-Maser, S.; Mayol-Bracero, O.L.; Godoi, R.H.M.; Artaxo, P.; Meixner, F.X.; Lima Moura, M.A.; d'Almeida Rocha, C.H.E.; Van Grieken, R.; Glovsky, M.M.; Flagan, R.C.; Andreae, M.O. doi  openurl
  Title Composition and diurnal variability of the natural Amazonian aerosol Type A1 Journal article
  Year (down) 2003 Publication Journal of geophysical research Abbreviated Journal  
  Volume 24 Issue 4765 Pages 5,1-16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000187858400009 Publication Date 2003-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:43523 Serial 7700  
Permanent link to this record
 

 
Author Artaxo, P.; Maenhaut, W.; Storms, H.; Van Grieken, R. doi  openurl
  Title Aerosol characteristics and sources for the Amazon Basin during the wet season Type A1 Journal article
  Year (down) 1990 Publication Journal of geophysical research Abbreviated Journal  
  Volume 95 Issue 10 Pages 16971-16985  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract As a part of the NASA Global Tropospheric Experiment (GTE), aerosols were sampled in the tropical rain forest of the Amazon Basin during the Amazon Boundary Layer Experiment (ABLE 2B) in April and May 1987, in the wet season, when no forest burning occurs. Fine (dp < 2.0 μm) and coarse (2.0 < dp < 15 μm) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced X ray emission (PIXE) was used to measure concentrations of 22 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb). Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. Absolute factor analysis was used to interpret the large data set of the trace element concentrations and to obtain elemental source profiles. Hierarchical cluster analysis was used to derive groups of individual particles. The concentrations of soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1±0.7 μg m−3, while the average coarse mass concentration was 6.1±1.8 μg m −3. Sulphur concentrations averaged 76±14 ng m −3 in the fine fraction and 37±9 ng m −3 in the coarse fraction. Biogenic aerosol-related elements were dominant under the forest canopy, while soil dust dominated at the top of the forest canopy. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Source profiles showed a homogeneous aerosol distribution with similar elemental compositions at the different sampling sites. Enrichment factor calculations revealed a soil dust elemental profile similar to the average bulk soil composition, and a biogenic component similar to the plant bulk elemental composition. Total aerosol mass source apportionment showed that biogenic particles account for 5595% of the airborne concentrations. The analysis of individual aerosol particles showed that the biogenic particles consist of leaf fragments, pollen grains, fungi, algae, and other types of particles. Several groups of particles with K, Cl, P, S, and Ca as minor elements could easily be identified as biogenic particles on the basis of their morphology. Considering the vast area of tropical rain forests and the concentrations measured in this work, it is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1990EB20200051 Publication Date 2008-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116931 Serial 7422  
Permanent link to this record
 

 
Author Artaxo, P.; Storms, H.; Bruynseels, F.; Van Grieken, R.; Maenhaut, W. doi  openurl
  Title Composition and sources of aerosols from the Amazon basin Type A1 Journal article
  Year (down) 1988 Publication Journal of geophysical research Abbreviated Journal  
  Volume 93 Issue D2 Pages 1605-1615  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aerosols were sampled in the Amazon Basin, as part of the Global Tropospheric Experiment (GTE), during the Amazon Boundary Layer Experiment (ABLE 2A) in JulyAugust 1985. Fine- and coarse-particle fractions were analyzed for 22 elements by particle-induced X ray emission. Gravimetric mass, black carbon, sulfate, and nitrate concentrations were also determined. Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Various receptor models, including multivariate methods and a chemical mass balance model, were employed in the interpretation of the bulk trace element concentrations. Three factors explained over 85% of the variability of fine- and coarse-mode variables. On the basis of the elemental composition of the factors, two could be identified as plant related, and the third was a soil dust component. Of the coarse-mode aerosol mass concentration (of 7.6±1.6 μg/m3), 62% could be attributed to aerosols released by the vegetation and 11% to soil dust. In the fine mode, soil dust accounted for less than 10% of the measured mass concentration (of 6.8±3.9 μg/m3). The variables related to the plant component were K, P, S, Ca, Mg, Cl, Rb, and the gravimetric mass. The elemental profile of the plant component resembled the bulk plant composition. By single-particle analysis coupled with hierarchical cluster analysis, six to nine different biogenic-related particle groups could be identified in the fine- and coarse-aerosol modes. Almost all particle types consisted predominantly of carbonaceous material, with trace amounts of K, S, Ca, P, Cl, and Na. Only one group, comprising less than 11% of the total number of particles, consisted of soil dustrelated aerosol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1988M303000024 Publication Date 2008-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113609 Serial 7702  
Permanent link to this record
 

 
Author Maenhaut, W.; Raemdonck, H.; Selen, A.; Van Grieken, R.; Winchester, J.W. doi  openurl
  Title Characterization of the atmospheric aerosol over the eastern equatorial Pacific Type A1 Journal article
  Year (down) 1983 Publication Journal of geophysical research Abbreviated Journal  
  Volume 88 Issue C:9 Pages 5353-5364  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract By using a polyester sailboat as sampling platform, a series of duplicate aerosol samples was collected by cascade impactors on a trip from Panama to Tahiti in 1979. Elemental analysis mainly by particle-induced X ray emission (PIXE) indicated, in the samples collected between Panama and the Galapagos Islands, the presence of a substantial crustal component (∼0.4 μg/m3), fine Cu (∼0.4 ng/m3) and Zn (∼0.6 ng/m3), and excess fine S and K (∼100 and ∼2.4 ng/m3, respectively) in addition to the major sea salt elements. The crustal component and fine Cu and Zn are suggested to result from natural continental sources (i.e., eolian dust transport from the American continents and perhaps geothermal emissions). Samples collected west of the Galapagos Islands in the southern trades showed significantly lower concentrations for the nonseawater components. The average Si and Fe levels were as low as 4.8 and 3.3 ng/m3, corresponding to a maximum of 0.066 μg/m3 for an assumed mineral dust component, whereas heavy metal concentrations were all below the detection limits (typically ranging from 0.05 to 0.15 ng/m3 for V, Cr, Mn, Ni, Cu, Zn, and Se). Excess fine S decreased to a mean of 46 ng/m3, a level similar to those reported for other remote marine and continental locations. This all indicates that the marine atmosphere west of the Galapagos was little influenced by natural continental source processes or by anthropogenic emissions. Under these truly marine conditions, several concentration ratios of the major seawater elements were significantly different from those in bulk seawater. Ca, Sr, and S in >1 μm diameter particles were enriched relative to K and Na, with the enrichment being substantially more pronounced (up to 50% or higher) for l4-μm diameter particles than for particles >4 μm. Comparison of these data with a similar data set from samples collected over the Atlantic indicates that the departures from seawater composition are significantly larger for the Pacific. Differences in sea-to-air fractionation processes, probably involving binding of divalent cations to organic matter in the oceanic surface microlayer, are suggested as being responsible for these observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1983QU67600025 Publication Date 2008-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113625 Serial 7633  
Permanent link to this record
 

 
Author Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W. doi  openurl
  Title Elemental abundance variation with particle-size in north florida aerosols Type A1 Journal article
  Year (down) 1976 Publication Journal of geophysical research Abbreviated Journal  
  Volume 81 Issue 6 Pages 1039-1046  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A nonurban base line has been established for nine trace element constituents of aerosol particles as a function of particle size at ground level sampling stations in north Florida up to 50 km from the Gulf of Mexico. The particle size range 0.25- to >4-μm aerodynamic diameter was investigated by cascade impactor sampling and elemental analysis by proton-induced X ray emission. By using a strategy of sampling at urban, forest, and coastal locations and by choosing approximately 48-hour sample averaging intervals the potential dependence of the base line levels both on local pollution and natural sources and on local particle size specific aerosol removal processes could be evaluated. It is found that elements contained in the largest particles, especially those of >4 μm, display the greatest degree of average concentration difference between sites, a result suggesting short atmospheric residence times and the importance of local dispersion sources and atmospheric cleansing processes in regulating the particle concentrations in air. Elements contained in particles of <2-μm diameter show little average concentration difference between sites unless they are influenced by local pollution sources, a finding suggesting that their concentrations in air are regulated by large-scale sources and transport processes. Sulfur in the smallest particles shows a marked constancy of concentration, but it may be modified in the largest particle size ranges in relation to proximity to the seacoast. No evidence is found for dependence of particulate sulfur concentrations on local pollution sources. K, Ca, Ti, Fe, and Zn appear to be regulated in the main by terrestrial source processes, and Cl by marine source processes, but Br and Pb appear to be accounted for adequately by assuming automotive fuel combustion as their major source. Limited data obtained for V indicate that it may vary considerably with fluctuations in aerosol transport from oil-fired electric power plant sources in the region. Limited additional data also suggest that Mn is derived from sources of natural terrestrial composition. In view of these findings, certain criteria may be set for the design of a meaningful nonurban aerosol monitoring network.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1976BG78300001 Publication Date 2008-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113637 Serial 7879  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: