toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sels, D.; Brosens, F.; Magnus, W. doi  openurl
  Title Wigner distribution functions for complex dynamical systems : a path integral approach Type A1 Journal article
  Year (down) 2013 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 392 Issue 2 Pages 326-335  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Starting from Feynmans Lagrangian description of quantum mechanics, we propose a method to construct explicitly the propagator for the Wigner distribution function of a single system. For general quadratic Lagrangians, only the classical phase space trajectory is found to contribute to the propagator. Inspired by Feynmans and Vernons influence functional theory we extend the method to calculate the propagator for the reduced Wigner function of a system of interest coupled to an external system. Explicit expressions are obtained when the external system consists of a set of independent harmonic oscillators. As an example we calculate the propagator for the reduced Wigner function associated with the CaldeiraLegett model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000311135200004 Publication Date 2012-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 2.243; 2013 IF: 1.722  
  Call Number UA @ lucian @ c:irua:101414 Serial 3921  
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W. pdf  doi
openurl 
  Title Classical trajectories : a powerful tool for solving tunneling problems Type A1 Journal article
  Year (down) 2012 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 391 Issue 1/2 Pages 78-81  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In the realm of Ehrenfests theorem, classical trajectories obeying Newtons laws have been proven useful to construct explicit solutions to the time-dependent WignerLiouville equation. Whereas previous works have particularly focused on the initial distribution function as a vehicle found to carry the signatures of quantum statistics into the time-dependent solution, the present paper shows that the LagrangeCharpit method based on classical trajectories can be successfully invoked as well to tackle quantum mechanical features with no classical counterpart, such as tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000297230700010 Publication Date 2011-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 2.243; 2012 IF: 1.676  
  Call Number UA @ lucian @ c:irua:92359 Serial 370  
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W. pdf  doi
openurl 
  Title On the path integral representation of the Wigner function and the BarkerMurray ansatz Type A1 Journal article
  Year (down) 2012 Publication Physics letters : A Abbreviated Journal Phys Lett A  
  Volume 376 Issue 6/7 Pages 809-812  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract The propagator of the Wigner function is constructed from the WignerLiouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) [1], we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301167300005 Publication Date 2012-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.772 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 1.772; 2012 IF: 1.766  
  Call Number UA @ lucian @ c:irua:94006 Serial 2445  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: