toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brosens, F.; Magnus, W. doi  openurl
  Title Newtonian trajectories : a powerful tool for solving quantum dynamics Type A1 Journal article
  Year (down) 2010 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 150 Issue 43/44 Pages 2102-2105  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Since Ehrenfests theorem, the role and importance of classical paths in quantum dynamics have been examined by several means. Along this line, we show that the classical equations of motion provide a solution to quantum dynamics, if appropriately incorporated into the Wigner distribution function, exactly reformulated in a type of Boltzmann equation. Also the quantum-mechanical features of the canonical ensemble can be studied in this framework of Newtonian dynamics, if the initial distribution function is appropriately constructed from the statistical operator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000284251700006 Publication Date 2010-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 7 Open Access  
  Notes ; The authors thank J.T. Devreese and J. Tempere for interesting and helpful discussions, and, in particular, L.F. Lemmens for several valuable suggestions. One of the authors (F.B.) acknowledges the FWO projects G.0115.06 and G.0365.08 as well as the WOG project WO.033.09N, for financial support. ; Approved Most recent IF: 1.554; 2010 IF: 1.981  
  Call Number UA @ lucian @ c:irua:85795 Serial 2338  
Permanent link to this record
 

 
Author Brosens, F.; Magnus, W. doi  openurl
  Title Carrier transport in nanodevices: revisiting the Boltzmann and Wigner distribution functions Type A1 Journal article
  Year (down) 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 7 Pages 1656-1661  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract In principle, transport of charged carriers in nanometer sized solid-state devices can be fully characterized once the non-equilibrium distribution function describing the carrier ensemble is known. In this light, we have revisited the Boltzmann and the Wigner distribution functions and the framework in which they emerge from the classical respectively quantum mechanical Liouville equation. We have assessed the method of the characteristic curves as a potential workhorse to solve the time dependent Boltzmann equation for carriers propagating through spatially non-uniform systems, such as nanodevices. In order to validate the proposed solution strategy, we numerically solve the Boltzmann equation for a one-dimensional conductor mimicking the basic features of a biased low-dimensional transistor operating in the on-state. Finally, we propose a computational scheme capable of extending the benefits of the above mentioned solution strategy when it comes to solve the Wigner-Liouville equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000268659100033 Publication Date 2009-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:77953 Serial 284  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: