|   | 
Details
   web
Record
Author Van Schoubroeck, S.
Title A techno-sustainability assessment framework : indicator selection and integrated method for sustainability analysis of biobased chemicals Type Doctoral thesis
Year (down) 2020 Publication Abbreviated Journal
Volume Issue Pages 195 p.
Keywords Doctoral thesis; Engineering Management (ENM)
Abstract Biobased chemistry has gained interest and has the potential to tackle some of the sustainability challenges the chemical industry must endure. Sustainability impacts need to be evaluated and monitored to highlight the advantages and pitfalls of different biobased routes over the product life cycle. A better understanding of the potential sustainability of emerging biobased technologies and products is essential to guide additional research and further technology development. This PhD thesis aims to develop a framework for a techno-sustainability assessment (TSA), while accounting for technological as well as economic, environmental, and social aspects in an integrated approach. First, a review of the state-of-the-art sustainability indicators for biobased chemicals was conducted and a gap analysis was performed to identify indicator development needs. Afterwards, a Delphi study was performed to select sustainability indicators specifically for biobased chemical assessment and to reach consensus among experts on a prioritization of these indicators. Next, the selected sustainability indicators were quantified while integrating technological and country-specific data with environmental characterization factors, economic values and social data. Finally, a stochastic, hierarchical multi-criteria decision analysis (MCDA) integrates the independent techno-sustainability indicators expressed in different units, taking into account stochastic and flexible method options. The developed integrated TSA framework was applied to a case for which a production and harvesting plant of microalgae-based food colorants is assessed. The final aim of the integrated TSA is to compare the potential sustainability performance of different scenarios and to make better-informed choices between alternatives by evaluating environmental, economic and social sustainability impacts in one holistic model. Integrated TSA offers a novel framework where decision makers can assess sustainability already in early technology development stages by identifying potential hurdles and opportunities to guide R&D and make sustainable investment decisions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174826 Serial 6947
Permanent link to this record