|   | 
Details
   web
Record
Author Li, J.; Zhu, W.; Dong, H.; Yang, Z.; Zhang, P.; Qiang, Z.
Title Impact of carrier on ammonia and organics removal from zero-discharge marine recirculating aquaculture system with sequencing batch biofilm reactor (SBBR) Type A1 Journal article
Year (down) 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume 27 Issue 28 Pages 34614-34623
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Marine recirculating aquaculture system (MRAS) is an effective technology that provides sustainable farming of food fish globally. However, dissolved organics material (chemical oxygen demand, COD) and especially ammonia are produced from uneaten feed and metabolic wastes of fish. To purify the MRAS water, this study adopted a sequencing biofilm batch reactor (SBBR) and comparatively investigated the performances of four different carriers on ammonia and COD removal. Results indicated that the NH4+-N removal rates were 0.045 +/- 0.05, 0.065 +/- 0.008, 0.089 +/- 0.005, and 0.093 +/- 0.003 kg/(m(3)center dot d), and the COD removal rates were 0.019 +/- 0.010, 0.213 +/- 0.010, 0.255 +/- 0.015, and 0.322 +/- 0.010 kg/(m(3)center dot d) in the SBBRs packed with porous plastic, bamboo ring, maifan stone, and ceramsite carriers, respectively. Among the four carriers, ceramsite exhibited the best performance for both NH4+-N (80%) and COD (33%) removal after the SBBR reached the steady-state operation conditions. For all carriers studied, the NH4+-N removal kinetics could be well simulated by the first-order model, and the NH4+-N and COD removal rates were logarithmically correlated with the carrier's specific surface area. Due to its high ammonia removal, stable performance and easy operation, the ceramsite-packed SBBR is feasible for MRAS water treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565020300005 Publication Date 2019-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.8 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741
Call Number UA @ admin @ c:irua:171932 Serial 6542
Permanent link to this record