|   | 
Details
   web
Record
Author Nematollahi, P.; Neyts, E.C.
Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
Year (down) 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 496 Issue 496 Pages 143618
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488957400004 Publication Date 2019-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 2 Open Access
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:163695 Serial 6294
Permanent link to this record