|   | 
Details
   web
Record
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A.
Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
Year (down) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 36 Pages 365203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441182400002 Publication Date 2018-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access OpenAccess
Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005
Permanent link to this record