|   | 
Details
   web
Record
Author van Laer, K.; Bogaerts, A.
Title Improving the Conversion and Energy Efficiency of Carbon Dioxide Splitting in a Zirconia-Packed Dielectric Barrier Discharge Reactor Type A1 Journal article
Year (down) 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 1038-1044
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The use of plasma technology for CO2 splitting is gaining increasing interest, but one of the major obstacles to date for industrial implementation is the considerable energy cost. We demonstrate that the introduction of a packing of dielectric zirconia (ZrO2) beads into a dielectric barrier discharge (DBD) plasma reactor can enhance the CO2 conversion and energy efficiency up to a factor 1.9 and 2.2, respectively, compared to that in a normal (unpacked) DBD reactor. We obtained a maximum conversion of 42 % and a maximum energy efficiency of 9.6 %. However, it is the ability of the packing to almost double both the conversion and the energy efficiency simultaneously at certain input parameters that makes it very promising. The improved conversion and energy efficiency can be explained by the higher values of the local electric field and electron energy near the contact points of the beads and the lower breakdown voltage, demonstrated by 2 D fluid modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362913600006 Publication Date 2015-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 59 Open Access
Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (http://psiiap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K.V.L. is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support Approved Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:128224 Serial 3992
Permanent link to this record