|   | 
Details
   web
Record
Author Tafuri, F.; Carillo, F.; Lombardi, F.; Granozio, F.M.; dii Uccio, U.S.; Testa, G.; Sarnelli, E.; Verbist, K.; Van Tendeloo, G.
Title YBa2Cu3O7-x Josephson junctions and dc SQUIDs based on 45\text{\textdegree} a-axis tilt and twist grain boundaries : atomically clean interfaces for applications Type A1 Journal article
Year (down) 1999 Publication Superconductor science and technology T2 – International Superconductive Electronics Conference, JUN 21-25, 1999, BERKELEY, CALIFORNIA Abbreviated Journal Supercond Sci Tech
Volume 12 Issue 11 Pages 1007-1009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract YBa2Cu3O7-x artificial grain boundary Josephson junctions have been fabricated, employing a recently implemented biepitaxial technique. The grain boundaries can be obtained by controlling the orientation of the MgO seed layer and are characterized by a misalignment of the c-axes (45 degrees a-axis tilt or 45 degrees a-axis twist). These types of grain boundaries are still mostly unexplored. We carried out a complete characterization of their transport properties and microstructure. Junctions and de SQUIDs associated with these grain boundaries exhibit an excellent Josephson phenomenology and high values of the ICRN product and of the magnetic flux-to-voltage transfer parameter respectively. Remarkable differences in the transport parameters of tilt and twist junctions have been observed, which can be of interest for several applications. A maximum speed of Josephson vortices as calculated from the voltage step values of the order of 2 x 10(6) m s(-1) is obtained. These devices could also have some impact on experiments designed to study the symmetry of the order parameter, exploiting their microstructure and anisotropic properties. High-resolution electron microscopy showed the presence of perfect basal plane faced boundaries in the cross sections of tilt boundaries.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000083948400093 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 3 Open Access
Notes Approved Most recent IF: 2.878; 1999 IF: 1.728
Call Number UA @ lucian @ c:irua:102896 Serial 3565
Permanent link to this record