|   | 
Details
   web
Record
Author Wang, A.; Van Aert, S.; Goos, P.; van Dyck, D.
Title Precision of three-dimensional atomic scale measurements from HRTEM images : what are the limits? Type A1 Journal article
Year (down) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 114 Issue Pages 20-30
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, we investigate to what extent high resolution transmission electron microscopy images can be used to measure the mass, in terms of thickness, and surface profile, corresponding to the defocus offset, of an object at the atomic scale. Therefore, we derive an expression for the statistical precision with which these object parameters can be estimated in a quantitative analysis. Evaluating this expression as a function of the microscope settings allows us to derive the optimal microscope design. Acquiring three-dimensional structure information in terms of thickness turns out to be much more difficult than obtaining two-dimensional information on the projected atom column positions. The attainable precision is found to be more strongly affected by processes influencing the image contrast, such as phonon scattering, than by the specific choice of microscope settings. For a realistic incident electron dose, it is expected that atom columns can be distinguished with single atom sensitivity up to a thickness of the order of the extinction distance. A comparable thickness limit is determined to measure surface steps of one atom. An increase of the electron dose shifts the limiting thickness upward due to an increase in the signal-to-noise ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000301954300003 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 5 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:94116 Serial 2692
Permanent link to this record