|   | 
Details
   web
Record
Author Wen, D.-Q.; Zhang, Q.-Z.; Jiang, W.; Song, U.-H.; Bogaerts, A.; Wang, Y.-N.
Title Phase modulation in pulsed dual-frequency capacitively coupled plasmas Type A1 Journal article
Year (down) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 23 Pages 233303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Particle-in-cell/Monte Carlo collision simulations, coupled with an external circuit, are used to investigate the behavior of pulsed dual-frequency (DF) capacitively coupled plasmas (CCPs). It is found that the phase shift θ between the high (or low) frequency source and the pulse modulation has a great influence on the ion density and the ionization rate. By pulsing the high frequency source, the time-averaged ion density shows a maximum when θ = 90∘. The time-averaged ion energy distribution functions (IEDFs) at the driven electrode, however, keep almost unchanged, illustrating the potential of pulsed DF-CCP for independent control of ion density (and flux) and ion energy. A detailed investigation of the temporal evolution of the plasma characteristics indicates that several high frequency harmonics can be excited at the initial stage of a pulse period by tuning the phase shift θ, and this gives rise to strong sheath oscillations, and therefore high ionization rates. For comparison, the pulsing of the low frequency source is also studied. In this case, the ion density changes slightly as a function of time, and the time-averaged ion density shows the same trend as in the HF modulation for different phase shifts θ. Moreover, the time-averaged IEDFs at the driven electrode can be modulated, showing the potential to reduce the maximum ion bombardment energy.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000338106000008 Publication Date 2014-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 8 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:117415 Serial 2585
Permanent link to this record