|   | 
Details
   web
Record
Author Rosenauer, A.; Schowalter, M.; Titantah, J.T.; Lamoen, D.
Title An emission-potential multislice approximation to simulate thermal diffuse scattering in high-resolution transmission electron microscopy Type A1 Journal article
Year (down) 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 12 Pages 1504-1513
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thermal diffuse scattered electrons significantly contribute to high-resolution transmission electron microscopy images. Their intensity adds to the background and is peaked at positions of atomic columns. In this paper we suggest an approximation to simulate intensity of thermal diffuse scattered electrons in plane-wave illumination transmission electron microscopy using an emission-potential multislice algorithm which is computationally less intensive than the frozen lattice approximation or the mutual intensity approach. Intensity patterns are computed for Au and InSb for different crystal orientations. These results are compared with intensities from the frozen lattice approximation based on uncorrelated vibration of atoms as well as with the frozen phonon approximation for Au. The frozen phonon method uses a detailed phonon model based on force constants we computed by a density functional theory approach. The comparison shows that our suggested emission-potential method is in close agreement with both the frozen lattice and the frozen phonon approximations.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300002 Publication Date 2008-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:72919 Serial 1033
Permanent link to this record