toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kalitzova, M.; Vlakhov, E.; Marinov, Y.; Gesheva, K.; Ignatova, V.A.; Lebedev, O.; Muntele, C.; Gijbels, R. pdf  doi
openurl 
  Title Effect of high-frequency electromagnetic field on Te+-implanted (001) Si</tex> Type A1 Journal article
  Year (down) 2004 Publication Vacuum: the international journal and abstracting service for vacuum science and technology Abbreviated Journal Vacuum  
  Volume 76 Issue 2-3 Pages 325-328  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The analysis of high-frequency electromagnetic field (HFEMF) effects on the microstructure and electrical properties of Te+ implanted (0 0 1) Si is reported. Cross-sectional high-resolution transmission electron microscopy (XHRTEM) demonstrates the formation of Te nanoclusters (NCs) embedded in the Si layer amorphized by implantation (a-Si) at fluences greater than or equal to 1 x 10(16) cm(-2). Post-implantation treatment with 0.45 MHz HFEMF leads to enlargement of Te NCs, their diffusion and accumulation at the a-Si surface and formation of laterally connected extended tellurium structures above the percolation threshold, appearing at an ion fluence of 1 x 10(17) cm(-2). AC electrical conductivity measurements show nearly four orders of magnitude decrease of impedance resistivity in this case, which is in good agreement with the results of our structural studies. The results obtained are discussed in terms of the two-phase isotropic spinodal structure. (C) 2004 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000224890100048 Publication Date 2004-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.53 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.53; 2004 IF: 0.902  
  Call Number UA @ lucian @ c:irua:95105 Serial 814  
Permanent link to this record
 

 
Author Deveirman, A.; van Landuyt, J.; Vanhellemont, J.; Maes, H.E.; Yallup, K. pdf  doi
openurl 
  Title Defects in high-dose oxygen implanted silicon : a TEM study Type A1 Journal article
  Year (down) 1991 Publication Vacuum: the international journal and abstracting service for vacuum science and technology T2 – 1ST SIOMX WORKSHOP ( SEPARATION BY IMPLANTATION OF OXYGEN ) ( SWI-88 ), NOV 07-08, 1988, UNIV SURREY, GUILDFORD, ENGLAND Abbreviated Journal Vacuum  
  Volume 42 Issue 5-6 Pages 367-369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Results are discussed of a transmission electron microscopy study of high-dose oxygen implanted silicon. In addition to the general high temperature (> 1200-degrees-C) annealing treatments also annealings at 'low' temperatures (1000-1100-degrees-C) were performed in order to slow down the precipitate and defect reactions. The observed dissolution of the oxide precipitates during prolonged high temperature annealing is explained by critical radius considerations. Threading dislocations are the remaining lattice defects in the silicon overlayer and cannot be removed by further annealing. Low temperature annealing results in the formation and subsequent unfaulting of extrinsic stacking fault loops below the buried oxide layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1991EV61700007 Publication Date 2002-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.858 Times cited 4 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:104022 Serial 629  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: