toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; Van Tendeloo, G.; Ionov, S.G. pdf  doi
openurl 
  Title Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation Type A1 Journal article
  Year (down) 2012 Publication New carbon materials Abbreviated Journal  
  Volume 27 Issue 1 Pages 12-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Flexible graphite foil produced by rolling expanded graphite impregnated with boron oxide was analyzed by laser mass spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermogravimetry. It was shown that the modification of the graphite foil by boron oxide increases the onset temperature of oxidation by ∼ 150 °C. Impregnation of less than 2 mass% boron oxide also increased the tensile strength of the materials. The observed improvement was attributed to the blocking of active sites by boron oxide, which is probably chemically bonded to the edges of graphene sheets in expanded graphite particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304742100002 Publication Date 2012-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96958 Serial 1569  
Permanent link to this record
 

 
Author Afanasov, I.M.; Lebedev, O.I.; Kolozhvary, B.A.; Smirnov, A.V.,; Van Tendeloo, G. pdf  doi
openurl 
  Title Nickel/carbon composite materials based on expanded graphite Type A1 Journal article
  Year (down) 2011 Publication New carbon materials Abbreviated Journal  
  Volume 26 Issue 5 Pages 335-340  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Monolithic nickel/carbon (Ni/C) composites were prepared from coal tar pitch-impregnated compressed expanded graphite pre-decorated with NiO particles (EGNiO) by pyrolysis at 550 °C and subsequent steam activation at 800 °C. The microstructural arrangement of the Ni-comprising nanoparticles in the composites was investigated using transmission electron microscopy. The specific surface area and porosity of the composites were analyzed by nitrogen adsorption. The catalytic activity of the composites was compared with the material obtained by the conventional H2 treatment of EGNiO using hydrocracking of 2,2,3-trimethylpentane as a model reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296926500003 Publication Date 2011-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:93633 Serial 2340  
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G.; Mateev, A.T. doi  openurl
  Title Production and structure of exfoliated graphite/coke composites modified by ZrO2 nanoparticles Type A1 Journal article
  Year (down) 2010 Publication New carbon materials Abbreviated Journal  
  Volume 25 Issue 4 Pages 255-260  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Exfoliated graphite/coke composites modified by ZrO2 nanoparticles were produced using two different techniques and characterized by means of X-ray diffraction, scanning and transmission electron microscopy. In the first, low-density exfoliated graphite/coke blocks were dipped repeatedly and alternately in ZrO(NO3)2 and NH4OH solutions and subsequently heat treated at 1200°C in nitrogen to deposit thin layers of ZrO2 nanoparticles on the free surfaces of the carbon matrix. In the second, a mixture of expandable graphite, phenol-formaldehyde resin powder, and ZrOC2O4-modified fibrous cellulose in a sealed container was submitted to thermal shock at 900 °C followed by heat treatment at 1 200 °C in nitrogen to obtain the modified composites. The ZrO2 nanoparticles formed in the second technique were incorporated into the composites in three length scales: 6-30 nm-isolated nanoparticles and small blobs, 200-1000 nm-lengthy dendrite-like structures, and thin layer adhering to the surface of the 1-40 μm long cellulose carbon fibers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281534800003 Publication Date 2010-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Iap-Vi Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84438 Serial 2721  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: