toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brauns, E.; van Hoof, E.; Huyskens, C.; de Wever, H. doi  openurl
  Title On the concept of a supervisory, fuzzy set logic based, advanced filtration control in membrane bioreactors Type A1 Journal article
  Year (down) 2011 Publication Desalination and water treatment Abbreviated Journal  
  Volume 29 Issue 1/3 Pages 119-127  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The filtration process within a membrane bioreactor (MBR) is mostly controlled in a classic way through typical set-points such as aeration flow rate, filtration duration, backwash frequency or relaxation duration. The values of these filtration set-points result from experience and remain often unchanged during the installations operational lifetime. Filtration is dictated considerably by membrane fouling phenomena. The fouling potential of the mixed liquor however can significantly fluctuate, even daily, from changing influent characteristics. Fixed set-point values thus may represent sub-optimal filtration conditions. Consequently, a supervising advanced control system, being able to continuously adapt the set-points values would be beneficial regarding the MBR filtration process optimization. Such optimization could reduce the corresponding MBR energy consumption, e.g. linked to the filtration related membrane aeration. An Advanced Control System (ACS) based on Fuzzy Set Logic (FSL) is introduced here, enabling to supervise an existing classic membrane filtration control system. Such ACS is able to daily (or even more frequent) optimize the set-points of the underlying classic control system, from the input of various sensor and process parameter values. The theoretical background and practical implementation of the FSL based ACS concept is explained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291314400014 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-3994; 1944-3986 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90094 Serial 8328  
Permanent link to this record
 

 
Author Huyskens, C.; Brauns, E.; van Hoof, E.; Diels, L.; de Wever, H. doi  openurl
  Title Validation of a supervisory control system for energy savings in membrane bioreactors Type A1 Journal article
  Year (down) 2011 Publication Water research Abbreviated Journal  
  Volume 45 Issue 3 Pages 1443-1453  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The application of fixed operational protocols and settings for membrane bioreactors (MBR) often leads to suboptimal filtration conditions due to the dynamic nature of mixed liquor characteristics. With regard to process optimization and energy savings, the potential benefits of a dynamic control system, enabling to adapt fouling control actions (ACS outputs) in an automated way to the actual mixed liquor fouling propensity, are thus obvious. In this paper, the pilot-scale validation of such an advanced control system (ACS) is elaborated. A specific on-line fouling measurement method, the MBR-VFM (VITO Fouling Measurement), was used for the evaluation of the mixed liquors reversible fouling propensity, which was used as a primary ACS input parameter. A first series of tests with a gradual increase in complexity of the selected input and output parameters indicated the functionality of the ACS and demonstrated a substantial reduction of aeration, however sometimes at the expense of a higher fouling rate. The ACS was further fine-tuned and subsequently tested for a longer period under more dynamic operating conditions. A significant correlation was found between the reversible fouling potential measured by the MBR-VFM and the on-line permeability, indicating that the MBR-VFM is a suitable ACS input. Furthermore, an average 22% reduction in aeration flow to the membranes could be achieved without any obvious negative effect on filtration performance. This indicates that this approach is promising to optimize energy consumption in MBRs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287054500047 Publication Date 2010-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:88400 Serial 8728  
Permanent link to this record
 

 
Author Huyskens, C.; Brauns, E.; van Hoof, E.; de Wever, H. doi  openurl
  Title A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor Type A1 Journal article
  Year (down) 2008 Publication Journal of membrane science Abbreviated Journal  
  Volume 323 Issue 1 Pages 185-192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, a new fouling measurement method is presented as a pragmatic approach to determine a mixed liquor's fouling propensity. The MBR-VFM (VITO Fouling Measurement) uses a specific measurement protocol consisting of alternating filtration and physical cleaning steps, which enables the calculation of both the reversible and the irreversible fouling resistances. The MBR-VFM principle, set-up and measurement protocol are described as well as the evaluation of the fouling measurement method. Finally, the MBR-VFM was validated by comparing the fouling propensity measured on-line by the MBR-VFM in a lab-scale MBR with the fouling of the MBR membranes themselves. Our experiments indicated that the MBR-VFM can accurately measure fouling and that it can even be detected earlier than can be seen from the on-line filtration data of the lab-scale system itself. Furthermore, the differences measured in reversible and irreversible fouling seemed to be related to the observed impact of physical and chemical cleaning respectively. Therefore, the application of the MBR-VFM as an on-line sensor in an advanced control system, enabling the deployment of the measured fouling data for the control of membrane cleaning, seems feasible and will be tested in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000258904600023 Publication Date 2008-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-7388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:88401 Serial 8303  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: