toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muret, P.; Nguyen, T.T.A.; Frangis, N.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title Photoelectric and electrical responses of several erbium silicide/silicon interfaces Type A1 Journal article
  Year (down) 1996 Publication Applied surface science T2 – International Symposium on Si Heterostructures – From Physics to Devices, SEP 11-14, 1995, IRAKLION, GREECE Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages 173-177  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, photoelectric yield and electrical properties of several types of epitaxial erbium silicide on silicon Schottky diodes are studied, Different preparation conditions are used simultaneously on n- and p-Si(111) substrates for the 200 Angstrom thick silicide films. A last type of sample consists in 1.3 monolayer of epitaxial silicide with root 3 X root 3 superstructure on the Si substrate and covered by silver on the top. Photocurrent measurements are done as a function of photon energy at several temperatures. All these samples show barrier heights near 1 eV on p-type Si, even for the interface comprising only 1.3 monolayer of silicide whereas barrier heights on n-rype Si span the range from 0.28 to 0.67 eV for this last kind of sample, the sum of the barriers always exceeding the silicon band gap, These photoelectric results are confirmed by electrical characterisations, All these results show that the Fermi level is pinned 0.1 eV below the conduction band edge on p-type Si but shifts to various positions lower within the band gap on n-type Si. This fact leads to the hypothesis of a density of -7 interface states close to the charge change in the Si depletion zone from p- to n-type, namely 10(12) eV(-1) cm(-2). Although some inhomogeneities and defects at the interface are detected by electron microscopy for samples annealed at 750 degrees C, Fermi level position seems rather insensitive to the structural details of the interface while the silicide thickness plays a role on n-type Si.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100039 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104392 Serial 2611  
Permanent link to this record
 

 
Author Frangis, N.; Van Tendeloo, G.; van Landuyt, J.; Muret, P.; Nguyen, T.T.A. doi  openurl
  Title Electron microscopy characterisation of erbium silicide-thin films grown on a Si(111) substrate Type A1 Journal article
  Year (down) 1996 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages 163-168  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100037 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 9 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15458 Serial 953  
Permanent link to this record
 

 
Author Frangis, N.; Van Tendeloo, G.; van Landuyt, J.; Muret, P.; Nguyen, T.T.A. pdf  doi
openurl 
  Title Structural characterisation of erbium silicide thin films of an Si(111) substrate Type A1 Journal article
  Year (down) 1996 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 234 Issue 2 Pages 244-250  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract ErSi2-x films (x = 0.1-0.3) grown by co-evaporation at different deposition ratios have been characterised by transmission electron microscopy, electron diffraction and high resolution electron microscopy. A very good epitaxial growth relation with the Si substrate was deduced for a1 samples and observed phases. Different defect modulated structures are formed; they can be described as structural variants (orthorhombic or rhombohedral) of the basic structure. The modulated phases are related to deviations from stoichiometry similar to crystallographic shear structures. The ErSi1.9 material contains Si precipitates, illustrating the preference for the ErSi1.7 composition to be maintained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996TX65100020 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.999 Times cited 14 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:15451 Serial 3213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: