toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mishra, V.K.; Kumar, P.; Van Poppel, M.; Bleux, N.; Frijns, E.; Reggente, M.; Berghmans, P.; Int Panis, L.; Samson, R. pdf  doi
openurl 
  Title Wintertime spatio-temporal variation of ultrafine particles in a Belgian city Type A1 Journal article
  Year (down) 2012 Publication The science of the total environment Abbreviated Journal  
  Volume 431 Issue Pages 307-313  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Simultaneous measurements of ultrafine particles (UFPs) were carried out at four sampling locations situated within a 1 km(2) grid area in a Belgian city, Borgerhout (Antwerp). All sampling sites had different orientation and height of buildings and dissimilar levels of anthropogenic activities (mainly traffic volume). The aims were to investigate: (i) the spatio-temporal variation of UFP within the area, (ii) the effect of wind direction with respect to the volume of traffic on UFP levels, and (iii) the spatial representativeness of the official monitoring station situated in the study area. All sampling sites followed similar diurnal patterns of UFP variation, but effects of local traffic emissions were evident. Wind direction also had a profound influence on UFP concentrations at certain sites. The results indicated a clear influence of local weather conditions and the more dominant effect of traffic volumes. Our analysis indicated that the regional air quality monitoring station represented the other sampling sites in the study area reasonably well; temporal patterns were found to be comparable though the absolute average concentrations showed differences of up to 35%. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306887900037 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:101123 Serial 8759  
Permanent link to this record
 

 
Author Nikolova, I.; Janssen, S.; Vos, P.; Vrancken, K.; Mishra, V.; Berghmans, P. pdf  doi
openurl 
  Title Dispersion modelling of traffic induced ultrafine particles in a street canyon in Antwerp, Belgium and comparison with observations Type A1 Journal article
  Year (down) 2011 Publication The science of the total environment Abbreviated Journal  
  Volume 412 Issue Pages 336-343  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this study is to investigate the dispersion of ultrafine particles and its spatial distribution in a street canyon and its neighbourhood with the 3D CFD model ENVI-met®. The performance of the model at street scale is evaluated and the importance of the boundary conditions like wind field and traffic emissions on the UFP concentration is demonstrated. To support and validate the modelled results, a short-term measurement campaign was conducted in a street canyon in Antwerp, Belgium. The UFP concentration was measured simultaneously with P-TRACK (TSI Model 8525) at four different locations in the canyon. The modelled UFP concentrations compare well with the measured data (correlation coefficient R from 0.44 to 0.93) within the standard deviation of the measurements. Despite the moderate traffic flow in the street canyon, UFP concentrations in the canyon are in general double of the background concentrations, indicating the high local contribution for this particle number concentration. Some of the observed concentration profiles are not resembled by the model simulations. For these specific anomalies, further analysis is performed and plausible explanations are put forward. The role of wind direction and traffic emissions is investigated. The performance evaluation of ENVI-met® shows that in general the model qualitatively and quantitatively describes the dispersion of UFP in the street canyon study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298534300038 Publication Date 2011-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94377 Serial 7815  
Permanent link to this record
 

 
Author Nikolova, I.; Janssen, S.; Vrancken, K.; Vos, P.; Mishra, V.; Berghmans, P. pdf  doi
openurl 
  Title Size resolved ultrafine particles emission model : a continues size distribution approach Type A1 Journal article
  Year (down) 2011 Publication The science of the total environment Abbreviated Journal  
  Volume 409 Issue 18 Pages 3492-3499  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E + 14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.040.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293260100026 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91949 Serial 8546  
Permanent link to this record
 

 
Author Mishra, V.K.; Dons, E.; Panis, L.I.; Frijns, E.; van Poppel, M.; Berghmans, P.; Bleux, N.; Wuyts, K.; Samson, R. openurl 
  Title Understanding ultrafine particles dynamics within a one km urban grid Type P3 Proceeding
  Year (down) 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:88671 Serial 8709  
Permanent link to this record
 

 
Author Berghmans, P.; Bleux, N.; Int Panis, L.; Mishra, V.K.; Torfs, R.; Van Poppel, M. pdf  doi
openurl 
  Title Exposure assessment of a cyclist to PM10 and ultrafine particles Type A1 Journal article
  Year (down) 2009 Publication The science of the total environment Abbreviated Journal  
  Volume 407 Issue 4 Pages 1286-1298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. in Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers. (C) 2008 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262573200005 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94563 Serial 7953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: