toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hebert, S. url  doi
openurl 
  Title Metal to insulator transition in the n-type hollandite vanadate Pb1.6V8O16 Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 3 Pages 035122, 1-035122,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The transport and magnetic measurements of polycrystalline Pb1.6V8O16 hollandite reveal a concomitant metal to insulator and antiferromagnetic transition at TMI≈140 K. A clear localization is found below TMI, evidenced by a rapid increase in the absolute value of the negative Seebeck coefficient. The structural study by x-ray and transmission electron microscopy confirms the hollandite structure and shows that no structural transition occurs at TMI, ruling out a possible charge orbital ordering. The negative Seebeck coefficient observed from 50 K up to 900 K, with values reaching S=−38 μV K−1 at 900 K, is explained by the electron doping of ∼1.4e− in the V empty t2g orbitals responsible for the bad metal resistivity (ρ900 K∼2 mΩ cm). As this S value is close to that obtained by considering only the spin and orbital degeneracies, it is expected that |S| for such vanadates will not be sensitive at high temperature to the t2g band filling  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280366300002 Publication Date 2010-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84065 Serial 2009  
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Nguyen, N.; Hebert, S.; Van Tendeloo, G.; Hervieu, M. doi  openurl
  Title A layered iron-rich 2234-type with a mixed valence of iron: the ferrimagnetic Tl-doped Fe2(Sr2-\varepsilonTl\varepsilon)Sr3Fe4O14.65 Type A1 Journal article
  Year (down) 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 20 Pages 6468-6476  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new Tl-doped strontium ferrite Fe2(Sr2-Tl)Sr3Fe4O14.65, with an original structure, has been synthesized and structurally characterized by powder X-ray diffraction and transmission electron microscopy. The TGA and Mssbauer studies evidence a mixed valence of iron. The structure exhibits a commensurate modulation, with a F-type subcell a ≈ b ≈ 5.4 Å (≈ ap√2), c ≈ 42 Å with a modulation vector q = αa* with α = 0.4. The supercell parameters have been refined as a= 27.1101(8) Å, b= 5.5187(2) Å and c= 42.0513(9) Å, in the space group Fmmm. The electron diffraction and electron microscopy data of this novel ferrite show that it can be described as a FeTl-2234-type structure corresponding to the intergrowth of a quadruple perovskite slice [(SrFeO2.8)4], with a complex rock salt related slice [Fe2(Sr2-Tl)O3.4]∞, built up of one double iron layer [Fe2O2.4] sandwiched between two [SrO] layers. The HRTEM images show that the oxygen atoms and vacancies are randomly distributed in the perovskite layers while the HAADF STEM images evidence the absence of Tl segregation in the matrix. Fe2(Sr2-Tl)Sr3Fe4O14.65 exhibits a very large value of χ (11emu/mol) at 5 K, which remains large at 400 K; the M(H) loop presents a shape characteristic of ferrimagnetism, with a large coercive field of 0.3 T. The value of magnetization saturates at 400 K at 0.68 μB/Fe. At 10 K, the value of magnetization reaches a maximum of 2 μB/Fe. The resistivity presents a semiconducting-like behavior, with ρ 800 Ω·cm at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260254400030 Publication Date 2008-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 8 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76671 Serial 1804  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: