toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. url  doi
openurl 
  Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
  Year (down) 2021 Publication Building And Environment Abbreviated Journal Build Environ  
  Volume 197 Issue Pages 107825-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663167900003 Publication Date 2021-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.053  
  Call Number UA @ admin @ c:irua:176925 Serial 8064  
Permanent link to this record
 

 
Author Marchetti, A.; Pilehvar, S.; 't Hart, L.; Leyva Pernia, D.; Voet, O.; Anaf, W.; Nuyts, G.; Otten, E.; Demeyer, S.; Schalm, O.; De Wael, K. pdf  url
doi  openurl
  Title Indoor environmental quality index for conservation environments : the importance of including particulate matter Type A1 Journal article
  Year (down) 2017 Publication Building and environment Abbreviated Journal Build Environ  
  Volume 126 Issue Pages 132-146  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Systems and software Modelling (AnSyMo); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract It is commonly known that the conservation state of works of arts exhibited inside museums is strongly influenced by the indoor environmental quality (IEQ). Heritage institutions traditionally record and evaluate their IEQ by monitoring temperature, relative humidity, and -more rarely-light. However, smart use of technology enables monitoring other parameters that give a more complete insight in environmental air aggressiveness. One of this parameters is particulate matter (PM) and especially its concentration, size distribution and chemical composition. In this work, we present a selection of data sets which were obtained in a measuring campaign performed in the War Heritage Institute in Brussels, Belgium. A continuous monitoring of PM concentration with a light scattering based particle counter was performed. In addition the daily mass concentration and size distribution of airborne PM was monitored by means of Harvard impactors. The chemical composition of sampled PM was inferred from the results of XRF and IC analysis. The insights from these datasets are combined with the results of traditional environmental monitoring (temperature, relative humidity and light intensity), and assessed against the recommended guidelines for conservation environments. By using an integrated approach based on the calculation of an IEQ-index, we present a straightforward methodology to evaluate and visualize the IEQ including also continuous PM monitoring. It is clear from the results of this study how including PM in IEQ analysis allows to identify potential risks for museum collections that remain invisible when only traditional parameters are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417010000012 Publication Date 2017-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited 10 Open Access  
  Notes ; The study was funded by UAntwerp, Belspo Brain BR/132/A6 and BR/154/A6. ; Approved Most recent IF: 4.053  
  Call Number UA @ admin @ c:irua:146371 Serial 5661  
Permanent link to this record
 

 
Author García-Sánchez, C.; Philips, D.A.; Gorlé, C. pdf  doi
openurl 
  Title Quantifying inflow uncertainties for CFD simulations of the flow in downtown Oklahoma City Type A1 Journal article
  Year (down) 2014 Publication Building and environment Abbreviated Journal Build Environ  
  Volume 78 Issue Pages 118-129  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Computational Fluid Dynamics (CFD) methods are widely used to investigate wind flow and dispersion in urban environments. Validation with field experiments that represent the full complexity of the problem should be performed to assess the predictive capabilities of the computations. In this context it will be necessary to quantify the effect of uncertainties in simulations of the full-scale problem. The present study aims at quantifying the uncertainty related to the variability in the inflow boundary conditions for Reynolds-averaged Navier-Stokes (RANS) simulations of the flow in downtown Oklahoma City to address validation with the Joint Urban 2003 field measurements. Three uncertain inflow parameters were defined: the wind speed and wind direction at a reference height, and the aerodynamic roughness in the logarithmic velocity inlet profile. An ensemble of 729 RANS simulations were performed to determine the polynomial chaos expansion coefficients that define the response surfaces for the velocity magnitude and direction at 13 field measurement stations, and the results are compared to the experimental data. For the velocity magnitude the mean experimental velocity magnitude is encompassed within the 95% confidence interval for the magnitudes predicted by the Uncertainty Quantification study in all stations. For the velocity direction this holds in 11 out of 13 locations. The study demonstrates the significant potential of applying advanced uncertainty quantification methods to address validation with field measurements and to develop a more realistic approach to the definition of inflow boundary conditions in atmospheric CFD simulations. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000338619700013 Publication Date 2014-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited 29 Open Access  
  Notes Approved Most recent IF: 4.053; 2014 IF: 3.341  
  Call Number UA @ lucian @ c:irua:118632 Serial 2742  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: